11
HETEROSCEDASTICITY

11.1 INTRODUCTION

Regression disturbances whose variances are not constant across observations are het-
eroscedastic. Heteroscedasticity arises in numerous applications, in both cross-section
and time-series data. For example, even after accounting for firm sizes, we expect to
observe greater variation in the profits of large firms than in those of small ones. The vari-
ance of profits might also depend on product diversification, research and development
expenditure, and industry characteristics and therefore might also vary across firms of
similar sizes. When analyzing family spending patterns, we find that there is greater vari-
ation in expenditure on certain commodity groups among high-income families than
low ones due to the greater discretion allowed by higher incomes.!
In the heteroscedastic regression model,
Var[e; | x;] = o-,-z, i=1,...,n.

‘We continue to assume that the disturbances are pairwise uncorrelated. Thus,

w, 0 0 --- 0 o2 0 0 - 0
0 w 0 --. 0 o O

Elee' |X] = 0’ = o? i = 2
0 0 0 -+ w, 0O 0 0 o2

n

It will sometimes prove useful to write 67 = o2w;. This form is an arbitrary scaling
which allows us to use a normalization,

() =Y w=n -

This makes the classical regression with homoscedastic disturbances a simple special
case with w; = 1,i = 1, ..., n. Intuitively, one might then think of the ws as weights
that are scaled in such a way as to reflect only the variety in the disturbance variances.
The scale factor o2 then provides the overall scaling of the disturbance process.

Example 11.1 Heteroscedastic Regression
The data in Appendix Table F9.1 give monthly credit card expenditure for 100 individuals,
sampled from a larger sample of 13,444 people. Linear regression of monthly expenditure on
a constant, age, income and its square, and a dummy variable for home ownership using the
72 observations for which expenditure was nonzero produces the residuals plotted in Fig-
ure 11.1. The pattern of the residuals is characteristic of a regression with heteroscedasticity.

1Prais and Houthakker (1955).
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GURE 11.1  Plot of Residuals Against |

This chapter will present the heteroscedastic regression model, first in general terms,
then with some specific forms of the disturbance covariance matrix. We begin by ex-
amining the consequences of heteroscedasticity for least squares estimation. We then
consider robust estimation, in two frameworks. Section 11.2 presents appropriate esti-
mators of the asymptotic covariance matrix of the least squares estimator. Section 11.3
discusses GMM estimation. Sections 11.4 to 11.7 present more specific formulations of
the model. Sections 11.4 and 11.5 consider generalized (weighted) least squares, which
requires knowledge at least of the form of . Section 11.7 presents maximum likelihood
estimators for two specific widely used models of heteroscedasticity. Recent analyses
of financial data, such as exchange rates, the volatility of market returns, and inflation,
have found abundant evidence of clustering of large and small disturbances,” which
suggests a form of heteroscedasticity in which the variance of the disturbance depends
on the size of the preceding disturbance. Engle (1982) suggested the AutoRegressive,
Conditionally Heteroscedastic, or ARCH, model as an alternative to the standard time-
series treatments. We will examine the ARCH model in Section 11.8.

2 ORDINARY LEAST SQUARES ESTIMATION

We showed in Section 10.2 that in the presence of heteroscedasticity, the least squares
estimator b is still unbiased, consistent, and asymptotically normally distributed. The

ZPioneering studies in the analysis of macroeconomic data include Engle (1982, 1983) and Cragg (1982).
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asymptotic covariance matrix is
1 ’ ! : 1 ’ : 1 (4 !
Asy. Var[b] = phm X'X plim —X'@X | { plim ;X X .
n
Estimation of the asymptotic covariance matrix would be based on
Var[b|X] = X'X)! ( 2 Z W;X; X ) X'x)" 1.
[See (10-5).] Assuming, as usual, that the regressors are well behaved, so that (X'X /)

converges to a positive definite matrix, we find that the mean square consistency of b
depends on the limiting behavior of the matrix:

X'eX _ .
Q= - Z XX}, 11-1)

If Q;; converges to a positive definite matrix Q*, then as n — oo, b will converge to 8
in mean square. Under most circumstances, if w; is finite for all {, then we would expect
this result to be true. Note that Qj; is a weighted sum of the squares and cross products
of x with weights w; / n, which sum to 1. We have already assumed that another weighted
sum X'X/n, in which the weights are 1/#, converges to a positive definite matrix Q, so it
would be surprising if Q; did not converge as well. In general, then, we would expect that

2
b< N[ﬁ, U—Q‘IQ*QI} . with Q* = plim Q.
n
A formal proof is based on Section 5.2 with Q; = WiX;X].

11.2.1 INEFFICIENCY OF LEAST SQUARES

It follows from our earlier results that b is inefficient relative to the GLS estimator. By
how much will depend on the setting, but there is some generality to the pattern. As
might be expected, the greater is the dispersion in w; across observations, the greater
the efficiency of GLS over OLS. The impact of this on the efficiency of estimation will
depend crucially on the nature of the disturbance variances. In the usual cases, in which
w; depends on variables that appear elsewhere in the model, the greater is the dispersion
in these variables, the greater will be the gain to using GLS. It is important to note,
however, that both these comparisons are based on knowledge of €. In practice, one of
two cases 1s likely to be true. If we do have detailed knowledge of ®, the performance
of the inefficient estimator is a moot point. We will use GLS or feasible GLS anyway. In
the more common case, we will not have detailed knowledge of , so the comparison
is not possible.

11.2.2 THE ESTIMATED COVARIANCE MATRIX OF b

If the type of heteroscedasticity is known with certainty, then the ordinary least squares
estimator is undesirable; we should use generalized least squares instead. The precise
form of the heteroscedasticity is usually unknown, however. In that case, generalized
least squares is not usable, and we may need to salvage what we can from the results of
ordinary least squares.
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The conventionally estimated covariance matrix for the least squares estimator
o2(X'X)"! is inappropriate; the appropriate matrix is o2(X’X) "1 (X'2X)(X’X) L. It is
unlikely that these two would coincide, so the usual estimators of the standard errors
are likely to be erroneous. In this section, we consider how erroneous the conventional
estimator is likely to be.

As usual,

2 e'e e’'Me

— _£re ~ 112
SEICK T Ak (11-2)

where M = I — X(X’X)~!X'. Expanding this equation, we obtain
2 ee EXX'X) X e

St= e . 7 (11-3)
Taking the two parts separately yields
e'e 1 twE[ee’ X no?
[n—K X_= n[—Kl ]:n-—K' (1-4)
[We have used the scaling tr(2) = n.] In addition,
E [s'X(X'X)AIX's x| _ HEIXX) ' Xee’X | X]}
n—K ] n—K

g 2 ’ -1
n n o X'X
= = t 1, 11-5

n—K K K n ) ”] (1-5)
where Q is defined in (11-1). As n — oo, the term in (11-4) will converge to 0. The
termin (11-5) will converge to zero if b is consistent because both matrices in the product
are finite. Therefore:

If b is consistent, then lim E[s?] = 0.

n—oo

It can also be shown—we leave it as an exercise —that if the fourth moment of every
disturbance is finite and all our other assumptions are met, then

lim Var [ ¢ eK] = lim Var [ d EK] =0.

H—>0C n— n—oo n —

This result implies, therefore, that:

If plimb = B, then plims? = o2.
Before proceeding, it is useful to pursue this result. The normalization tr(2) = nimplies
that

1 o?

2_z2_ 1 2 i

o°=a —nZai and o; = 32

1

Therefore, our previous convergence result implies that the least squares estimator
s? converges to plim &2, that is, the probability limit of the average variance of the
disturbances, assuming that this probability limit exists. Thus, some further assumption
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about these variances is necessary to obtain the result. (For an application, see Exercise 5
in Chapter 13.)

The difference between the conventional estimator and the appropriate (true)
covariance matrix for b is

Est. Var[b|X] — Var[b|X] = s2(X'X)"! - 2(X'X) ' (X'2X)(X'X)"".  (11-6)
In a large sample (so that s* ~ %), this difference is approximately equal to
2 /X'X -1 X ’ X'X -1
b2 PR e
n\ n n n n

The difference between the two matrices hinges on

XX XX “ (o 1<
A= —E ; —E — ,-’.=—§ 1—w)xx,, (11-8
p - < )xx <n>xx, ni:l( w)XX;,  ( )

i=1

where x; is the ith row of X. These are two weighted averages of the matrices Q; = x;x},
using weights 1 for the first term and w; for the second. The scaling tr(R) = » implies
that >, (w;/n) = 1. Whether the weighted average based on w;/n differs much from
the one using 1/n depends on the weights. If the weights are related to the values in
x;, then the difference can be considerable. If the weights are uncorrelated with x;x;,
however, then the weighted average will tend to equal the unweighted average.’

Therefore, the comparison rests on whether the heteroscedasticity is related to any
of x or x; x x;. The conclusion is that, in general: If the heteroscedasticity is not correlated
with the variables in the model, then at least in large samples, the ordinary least squares
computations, although not the optimal way to use the data, will not be misleading. For
example, in the groupwise heteroscedasticity model of Section 11.7.2, if the observations
are grouped in the subsamples in a way that is unrelated to the variables in X, then the
usual OLS estimator of Var[b] will, at least in large samples, provide a reliable estimate
of the appropriate covariance matrix. It is worth remembering, however, that the least
squares estimator will be inefficient, the more so the larger are the differences among
the variances of the groups.*

The preceding is a useful result, but one should not be overly optimistic. First, it re-
mains true that ordinary least squares is demonstrably inefficient. Second, if the primary
assumption of the analysis—that the heteroscedasticity is unrelated to the variables in
the model—1is incorrect, then the conventional standard errors may be quite far from
the appropriate values. :

11.2.3 ESTIMATING THE APPROPRIATE COVARIANCE MATRIX
FOR ORDINARY LEAST SQUARES

It is clear from the preceding that heteroscedasticity has some potentially serious im-
plications for inferences based on the results of least squares. The application of more

3Suppose, for example, that X contains a single column and that both x; and e; are independent and 1dent1cally
distributed random variables. Then x x/n converges to E[x ], whereas X'@x/n converges to Cov{wi, x; 2] +
E[wi]E[x?]. E[wi] = 1, soif w and x? are uncorrelated, then the sums have the same probability limit.

4Some general results, including analysis of the properties of the estimator based on estimated variances, are
given in Taylor (1977).
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appropriate estimation techniques requires a detailed formulation of £, however. It may
well be that the form of the heteroscedasticity is unknown. White (1980) has shown that
it is still possible to obtain an appropriate estimator for the variance of the least squares
estimator, even if the heteroscedasticity is related to the variables in X. The White
estimator [see (10-14) in Section 10.3°]

1/XX\'/1< x'x\ !
Est. Asy. Var|b] = - [ — - 2ex! | { —— ) 11-9
nsvt () (15 0n) (52 o

where e¢; is the ith least squares residual, can be used as an estimate of the asymptotic
variance of the least squares estimator.

A number of studies have sought to improve on the White estimator for OLS.®
The asymptotic properties of the estimator are unambiguous, but its usefulness in small
samples is open to question. The possible problems stem from the general result that
the squared OLS residuals tend to underestimate the squares of the true disturbances.
[That is why we use 1/(n — K) rather than 1/n in computing s?.] The end result is that
in small samples, at least as suggested by some Monte Carlo studies [e.g., MacKinnon
and White (1985)], the White estimator is a bit too optimistic; the matrix is a bit too
small, so asymptotic ¢ ratios are a little too large. Davidson and MacKinnon (1993,
p. 554) suggest a number of fixes, which include (1) scaling up the end result by a factor
n/(n — K) and (2) using the squared residual scaled by its true variance, e?/my;, instead
of 2, where m;; = 1 — x/(X'X)~'x;.” [See (4-20).] On the basis of their study, Davidson
and MacKinnon strongly advocate one or the other correction. Their admonition “One
should never use [the White estimator] because [(2)] always performs better” seems a bit
strong, but the point is well taken. The use of sharp asymptotic results in small samples
can be problematic. The last two rows of Table 11.1 show the recomputed standard
errors with these two modifications.

Example 11.2 The White Estimator
Using White’s estimator for the regression in Example 11.1 produces the results in the row
labeled “White S. E.” in Table 11.1. The two income coefficients are individually and jointly sta-
tistically significant based on the individual t ratios and F(2, 67) = [(0.244—0.064) /2]/[0.776/
(72 — 5)] = 7.771. The 1 percent critical value is 4.94.

The differences in the estimated standard errors seem fairly minor given the extreme
heteroscedasticity. One surprise is the decline in the standard error of the age coefficient.
The F testis no longer available for testing the joint significance of the two income coefficients
because it relies on homoscedasticity. A Wald test, however, may be used in any event. The
chi-squared test is based on

, et fooo01o0
W = (Rb)’[R(Est. Asy. Var[b])R'| " (Rb) whereFt_l0 00 0 1},

and the estimated asymptotic covariance matrix is the White estimator. The F statistic based
on least squares is 7.771. The Wald statistic based on the White estimator is 20.604; the 95

percent critical value for the chi-squared distribution with two degrees of freedom is 5.99, so
the conclusion is unchanged.

3See also Eicker (1967), Horn, Horn, and Duncan (1975), and MacKinnon and White (1985).
%See, e.g., MacKinnon and White (1985) and Messer and White (1984).

"They also suggest a third correction, el.2 / ml.zl., as an approximation to an estimator based on the “jackknife”

technique, but their advocacy of this estimator is much weaker than that of the other two.

/
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Constant Age OwnRent Income Income?

Sample Mean 32.08 0.36 3.369

Coefficient —237.15 —3.0818 27.941 23435 —14.997
Standard Error 199.35 5.5147 82.922 80.366 7.4693
t ratio -1.10 —0.5590 0.337 2.916 —2.008
White S.E. 212.99 3.3017 92.188 88.866 6.9446
D. and M. (1) 270.79 3.4227 95.566 92,122 7.1991
D. and M. (2) 221.09 3.4477 95.632 92.083 7.1995

R? =0.243578, s = 284.75080

Mean Expenditure = $189.02. Income is x $10,000

Tests for Heteroscedasticity: White = 14.329, Goldfeld-Quandt =15.001,
Breusch—Pagan = 41.920, Koenker-Bassett = 6.187.

(Two degrees of freedom. x? = 5.99.)

11.3 GMM ESTIMATION OF THE
HETEROSCEDASTIC REGRESSION MODEL

The GMM estimator in the heteroscedastic regression model is produced by the empir-
ical moment equations

1 - 1 A N
p in (% = xiBoum) = ;X’é (Bomm) = m(Bgym) =0. (11-10)
i=1

The estimator is obtained by minimizing

g =m’ (.BGMM) Wﬁl(ﬁcMM)

where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {Asy. Var[yam(g)]} "

which is the inverse of

Asy. Var[/nm(B)] = Asy. Var

n—oo 1

Zx,e,} = plim — Za Wi X;X] =02Q*

[see (11-1)]. The optimal weighting matrix would be [azQ*]‘l. But, recall that this
minimization problem is an exactly identified case, so, the weighting matrix is irrelevant
to the solution. You can see that in the moment equation —that equation is simply the
normal equations for least squares. We can solve the moment equations exactly, so
there is no need for the weighting matrix. Regardless of the covariance matrix of the
moments, the GMM estimator for the heteroscedastic regression model is ordinary least
squares. (This is Case 2 analyzed in Section 10.4.) We can use the results we have already
obtained to find its asymptotic covariance matrix. The result appears in Section 11.2.
The implied estimator is the White estimator in (11-9). [Once again, see Theorem 10.6.]
The conclusion to be drawn at this point is that until we make some specific assumptions
about the variances, we do not have a more efficient estimator than least squares, but
we do have to modify the estimated asymptotic covariance matrix.
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11.4 TESTING FOR HETEROSCEDASTICITY

Heteroscedasticity poses potentially severe problems for inferences based on least
squares. One can rarely be certain that the disturbances are heteroscedastic however,
and unfortunately, what form the heteroscedasticity takes if they are. Assuch, itis useful
to be able to test for homoscedasticity and if necessary, modify our estimation proce-
dures accordingly.® Several types of tests have been suggested. They can be roughly
grouped in descending order in terms of their generality and, as might be expected, in
ascending order in terms of their power.’?

Most of the tests for heteroscedasticity are based on the following strategy. Ordinary
least squares is a consistent estimator of B even in the presence of heteroscedasticity.
As such, the ordinary least squares residuals will mimic, albeit imperfectly because of
sampling variability, the heteroscedasticity of the true disturbances. Therefore, tests
designed to detect heteroscedasticity will, in most cases, be applied to the ordinary least
squares residuals.

11.41 WHITE’'S GENERAL TEST

To formulate most of the available tests, it is necessary to specify, at least in rough terms,
the nature of the heteroscedasticity. It would be desirable to be able to test a general
hypothesis of the form :

Hy - oiz =o? foralli,

H; : Not H,.

In view of our earlier findings on the difficulty of estimation in a model with » unknown
parameters, this is rather ambitious. Nonetheless, such a test has been devised by White
(1980b). The correct covariance matrix for the least squares estimator is

Var[bX] = o[ X'X] " [X'X][X'X] !, (11-11)

which, as we have seen, can be estimated using (11-9). The conventional estimator is
V = s?[X’X]~!. If there is no heteroscedasticity, then V will give a consistent estimator
of Var[b|X], whereas if there is, then it will not. White has devised a statistical test based
on this observation. A simple operational version of his test is carried out by obtaining
nR? in the regression of € on a constant and all unique variables contained in x and
all the squares and cross products of the variables in x. The statistic is asymptotically
distributed as chi-squared with P — 1 degrees of freedom, where P is the number of
regressors in the equation, including the constant.

The White test is extremely general. To carry it out, we need not make any specific
assumptions about the nature of the heteroscedasticity. Although this characteristic is
a virtue, it is, at the same time, a potentially serious shortcoming. The test may reveal

8There is the possibility that a preliminary test for heteroscedasticity will incorrectly lead us to use weighted
least squares or fail to alert us to heteroscedasticity and lead us improperly to use ordinary least squares.
Some limited results on the properties of the resulting estimator are given by Ohtani and Toyoda (1980).
Their results suggest that it is best to test first for heteroscedasticity rather than merely to assume that it is
present.

9 A study that examines the power of several tests for heteroscedasticity is Ali and Giaccotto (1984).
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heteroscedasticity, but it may instead simply identify some other specification error
(such as the omission of x> from a simple regression).'” Except in the context of a
specific problem, little can be said about the power of White’s test; it may be very low
against some alternatives. In addition, unlike some of the other tests we shall discuss,
the White test is nonconstructive. If we reject the null hypothesis, then the result of the
test gives no indication of what to do next.

11.4.2 THE GOLDFELD-QUANDT TEST

By narrowing our focus somewhat, we can obtain a more powerful test. Two tests that
are relatively general are the Goldfeld-Quandt (1965) test and the Breusch-Pagan
(1979) Lagrange multiplier test.

For the Goldfeld—Quandet test, we assume that the observations can be divided into
two groups in such a way that under the hypothesis of homoscedasticity, the disturbance
variances would be the same in the two groups, whereas under the alternative, the
disturbance variances would differ systematically. The most favorable case for this would
be the groupwise heteroscedastic model of Section 11.7.2 and Example 11.7 or a model
such as 67 = o2x? for some variable x. By ranking the observations based on this x,
we can separate the observations into those with high and low variances. The test is
applied by dividing the sample into two groups with n; and n, observations. To obtain
statistically independent variance estimators, the regression is then estimated separately
with the two sets of observations. The test statistic is

_ee/m—K)

Fln —K,ny— K] = ,
=Ko = K] = =K

11-12)
where we assume that the disturbance variance is larger in the first sample. (If not, then
reverse the subscripts.) Under the null hypothesis of homoscedasticity, this statistic has
an F distribution with n; — K and ny — K degrees of freedom. The sample value can
be referred to the standard F table to carry out the test, with a large value leading to
rejection of the null hypothesis.

To increase the power of the test, Goldfeld and Quandt suggest that a number of
observations in the middle of the sample be omitted. The more observations that are
dropped, however, the smaller the degrees of freedom for estimation in each group will
be, which will tend to diminish the power of the test. As a consequence, the choice of how
many central observations to drop is largely subjective. Evidence by Harvey and Phillips
(1974) suggests that no more than a third of the observations should be dropped. If the
disturbances are normally distributed, then the Goldfeld-Quandt statistic is exactly
distributed as F under the null hypothesis and the nominal size of the test is correct.
If not, then the F distribution is only approximate and some alternative method with
known large-sample properties, such as White’s test, might be preferable.

11.4.3 THE BREUSCH-PAGAN/GODFREY LM TEST

The Goldfeld—Quandt test has been found to be reasonably powerful when we are able
to identify correctly the variable to use in the sample separation. This requirement does
limit its generality, however. For example, several of the models we will consider allow

10Thursby (1982) considers this issue in detail.
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the disturbance variance to vary with a set of regressors. Breusch and Pagan'!! have
devised a Lagrange multiplier test of the hypothesis that 67 = o2 f(ap + &'z;), where
z; is a vector of independent variables.'”> The model is homoscedastic if @ = 0. The test
can be carried out with a simple regression:

LM = % explained sum of squares in the regression of e?/(e’e/n) on z;.

For computational purposes, let Z be the n x P matrix of observations on (1, z;), and
let g be the vector of observations of g; = ¢?/(e’e/n) — 1. Then

LM = g Z(Z'Z) ' Z'g).

Under the null hypothesis of homoscedasticity, LM has a limiting chi-squared distri-
bution with degrees of freedom equal to the number of variables in z;. This test can
be applied to a variety of models, including, for example, those examined in Exam-
ple 11.3 (3) and in Section 11.7.1

It has been argued that the Breusch-Pagan Lagrange multiplier test is sensitive to
the assumption of normality. Koenker (1981) and Koenker and Bassett (1982) suggest
that the computation of LM be based on a more robust estimator of the variance of eiz,

1< eel?
V=- A B
nz{e’ n}

The variance of &? is not necessarily equal to 20 if &; is not normally distributed. Let u
equal (e7, €3, ...,€2) and i be an n x 1 column of 1s. Then & = ¢’e/n. With this change,
the computation becomes

LM = {ﬂ (- a)Z(Z'Z)"'Z (u - @i).

Under normality, this modified statistic will have the same asymptotic distribution as the
Breusch—-Pagan statistic, but absent normality, there is some evidence that it provides a
more powerful test. Waldman (1983) has shown that if the variables in z; are the same
as those used for the White test described earlier, then the two tests are algebraically
the same.

Example 11.3 Testing for Heteroscedasticity

1. White’s Test: For the data used in Example 11.1, there are 15 variables in x ® x including
the constant term. But since Ownrent? = OwnRent and Income x Income = Income?, only 13
are unique. Regression of the squared least squares residuals on these 13 variables produces
R? = 0.199013. The chi-squared statistic is therefore 72(0.199013) = 14.329. The 95 percent
critical value of chi-squared with 12 degrees of freedom is 21.03, so despite what might seem
to be obvious in Figure 11.1, the hypothesis of homoscedasticity is not rejected by this test.
2. Goldfeld—Quandt Test: The 72 observations are sorted by Income, and then the regres-
sion is computed with the first 36 observations and the second. The two sums of squares
are 326,427 and 4,894,130, so the test statistic is F[31, 31] = 4,894,130/326,427 = 15.001.
The critical value from this table is 1.79, so this test reaches the opposite conclusion.

UBreusch and Pagan (1979).
121 agrange multiplier tests are discussed in Section 17.5.3.

13The model Uiz =02 exp(a’;) is one of these cases. In analyzing this model specifically, Harvey (1976) derived
the same test statistic.
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3. Breusch-Pagan Test: This test requires a specific alternative hypothesis. For this pur-
pose, we specify the test based on z=[1, Income, IncomeSq]. Using the least squares resid-
uals, we compute g; = €?/(e’e/72) — 1; then LM = 1g'Z(Z'Z)~'Z'g. The sum of squares
is 5,432,562.033. The computation produces LM = 41.920. The critical value for the chi-
squared distribution with two degrees of freedom is 5.99, so the hypothesis of homoscedas-
ticity is rejected. The Koenker and Bassett variant of this statistic is only 6.187, which is stili
significant but much smaller than the LM statistic. The wide difference between these two
statistics suggests that the assumption of normality is erroneous. Absent any knowledge
of the heteroscedasticity, we might use the Bera and Jarque (1981, 1982) and Kiefer and
Salmon (1983) test for normality,

x%[2] = nl(ma/s%)? + ((my — 3) /s%)]

wherem; =(1/n) Y, e/ . Under the null hypothesis of homoscedastic and normally distributed
disturbances, this statistic has a limiting chi-squared distribution with two degrees of free-
dom. Based on the least squares residuals, the value is 482.12, which certainly does lead
to rejection of the hypothesis. Some caution is warranted here, however. It is unclear what
part of the hypothesis should be rejected. We have convincing evidence in Figure 11.1 that
the disturbances are heteroscedastic, so the assumption of homoscedasticity underlying
this test is questionable. This does suggest the need to examine the data before applying a
ie specification test such as this one. ‘ '

11.5 WEIGHTED LEAST SQUARES
WHEN @ IS KNOWN

Having tested for and found evidence of heteroscedasticity, the logical next step is to
revise the estimation technique to account for it. The GLS estimator is

g =Xe'xX)"'xely.

Consider the most general case, Varle; | x;] = 07 = o%w;. Then @ is a diagonal matrix

whose ith diagonal element is 1/w;. The GLS estimator is obtained by regressing

/o1 X1/ /@1

n/Jor X2/ Jan
Py = ) on PX= ) )

Y/ N/On Xn//On,

Applying ordinary least squares to the transformed model, we obtain the weighted least
squares (WLS) estimator.

n -1 n
A= [Z WiXiX;:| [Z Wix; yl} : 11-13)
i=1 i=1

where w; = 1/w;.* The logic of the computation is that observations with smaller vari-
ances receive a larger weight in the computations of the sums and therefore have greater
influence in the estimates obtained.

1“The weights are often denoted w,-:l/(riz. This expression is consistent with the equivalent §=
[X'(02)~'X] ' X'(c2Q)"'y. The o2’s cancel, leaving the expression given previously.
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A common specification is that the variance is proportional to one of the regressors
or its square. Our earlier example of family expenditures is one in which the relevant
variable is usually income. Similarly, in studies of firm profits, the dominant variable is
typically assumed to be firm size. If

2 __ 2.2
O'i =0 .xik,

then the transformed regression model for GLS is

Y et h <ﬂ>+ﬂ2 (ﬂ)+---+i. (A1-14)
Xk Xk Xk Xk

If the variance is proportional to x; instead of x7, then the weight applied to each
observation is 1/,/x; instead of 1/x.

In (11-14), the coefficient on x; becomes the constant term. But if the variance is
proportional to any power of x; other than two, then the transformed model will no
longer contain a constant, and we encounter the problem of interpreting R? mentioned
earlier. For example, no conclusion should be drawn if the R? in the regression of y/zon
1/z and x/z is higher than in the regression of y on a constant and x for any z, including
x. The good fit of the weighted regression might be due to the presence of 1/z on both
sides of the equality.

It is rarely possible to be certain about the nature of the heteroscedasticity in a
regression model. In one respect, this problem is only minor. The weighted least squares
estimator

n -1 n
.3 = [Z WiXiXE} |:Z Wi"i)’i:l
i=1 i=1

is consistent regardless of the weights used, as long as the weights are uncorrelated with
the disturbances.

But using the wrong set of weights has two other consequences that may be less
benign. First, the improperly weighted least squares estimator is inefficient. This point
might be moot if the correct weights are unknown, but the GLS standard errors will
also be incorrect. The asymptotic covariance matrix of the estimator

B =XV IX]"'X'Vly 11-15)
is
Asy. Var[8] = o2 [X' VX' X'V IQVIX[X'VIX] . (11-16)

This result may or may not resemble the usual estimator, which would be the matrix in
brackets, and underscores the usefulness of the White estimator in (11-9).

The standard approach in the literature is to use OLS with the White estimator
or some variant for the asymptotic covariance matrix. One could argue both flaws and
virtues in this approach. In its favor, robustness to unknown heteroscedasticity is a
compelling virtue. In the clear presence of heteroscedasticity, however, least squares
can be extremely inefficient. The question becomes whether using the wrong weights is
better than using no weights at all. There are several layers to the question. If we use
one of the models discussed earlier— Harvey’s, for example, is a versatile and flexible
candidate —then we may use the wrong set of weights and, in addition, estimation of
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the variance parameters introduces a new source of variation into the slope estimators
for the model. A heteroscedasticity robust estimator for weighted least squares can
be formed by combining (11-16) with the White estimator. The weighted least squares
estimator in (11-15) is consistent with any set of weights V =diag[v;, vs, ..., v,]. Its
asymptotic covariance matrix can be estimated with —

n 2
Est.Asy. Var[f] = (X'V~'X)"! [E (e—z) xx, | (X'V7IX)~ L, (11-17)
v .

i

i=1

Any consistent estimator can be used to form the residuals. The weighted least squares
estimator is a natural candidate.

.6 ESTIMATION WHEN € CONTAINS UNKNOWN

PARAMETERS

The general form of the heteroscedastic regression model has too many parameters to
estimate by ordinary methods. Typically, the model is restricted by formulating o282 as
a function of a few parameters, as in 6 = o%x¥ or 67 = o?[x/a]?. Write this as 2(a).
FGLS based on a consistent estimator of Q(«) (meaning a consistent estimator of o)
is asymptotically equivalent to full GLS, and FGLS based on a maximum likelihood
estimator of Q(a) will produce a maximum likelihood estimator of B8 if Q(«) does
not contain any elements of B. The new problem is that we must first find consistent
estimators of the unknown parameters in (). Two methods are typically used, two-

step GLS and maximum likelihood.

11.6.1 TWO-STEP ESTIMATION

For the heteroscedastic model, the GLS estimator is

-1
~ n 1 n 1
B= [Z <'07)Xixf} [Z (;)Xz’}’z} . (11-18)
i=1 ! i=1 l

The two-step estimators are computed by first obtaining estimates 67, usually using
some function of the ordinary least squares residuals. Then. 8 uses (11-18) and G2.
The ordinary least squares estimator of 8, although inefficient, is still consistent. As
such, statistics computed using the ordinary least squares residuals, e; = (yi —x(b), will
have the same asymptotic properties as those computed using the true disturbances,
& = (y; —x;B). This result suggests a regression approach for the true disturbances and
variables z; that may or may not coincide with x;. Now E[¢7 |z;] = o, s0

2 2
& =0 + v,

where v; is just the difference between &7 and its conditional expectation. Since ¢; is
unobservable, we would use the least squares residual, for which ¢; = ; — x(b-p)=

. p . .
& + u;. Then, e,-2 = 81-2 —+ ui2 + 2¢;u;. But, in large samples, as b— B, terms in u; will
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become negligible, so that at least approximately,'>

e,-2 = aiz + v},

The procedure suggested is to treat the variance function as a regression and use the
squares or some other functions of the least squares residuals as the dependent vari-
able.'® For example, if 0 = z}a, then a consistent estimator of a will be the least squares
slopes, a, in the * model ”

2 __ o *
€; _zia+v,~.

In this model, v/ is both heteroscedastic and autocorrelated, so a is consistent but
inefficient. But, consistency is all that is required for asymptotically efficient estimation
of B using R(é&). It remains to be settled whether improving the estimator of « in this
and the other models we will consider would improve the small sample properties of
the two-step estimator of 8.1

The two-step estimator may be iterated by recomputing the residuals after comput-
ing the FGLS estimates and then reentering the computation. The asymptotic properties
of the iterated estimator are the same as those of the two-step estimator, however. In
some cases, this sort of iteration will produce the maximum likelihood estimator at
convergence. Yet none of the estimators based on regression of squared residuals on
other variables satisfy the requirement. Thus, iteration in this context provides little
additional benefit, if any.

11.6.2 MAXIMUM LIKELIHOOD ESTIMATION®

The log-likelihood function for a sample of normally distributed observations is

1 < 1
InL= —g InQ27) — 3 Z [lnaiz + a_iz()’i - x}B)’

i=1

For simplicity, let (11-19)

Giz = ozﬁ(a)v

where « is the vector of unknown parameters in (e) and f;(a) is indexed by i to
indicate that it is a function of z; —note that () = diag[ f; ()] so it is also. Assume as
well that no elements of g appear in &. The log-likelihood function is

n 1 - 1

i=1

For convenience in what follows, substitute ¢; for (y; — x/f8), denote f;(«) as simply
fi, and denote the vector of derivatives df;(«)/0a as g;. Then, the derivatives of the

@Amemiya (1985) for formal analysis.

168ee, for example, Jobson and Fuller (1980).

TFomby, Hill, and Johnson (1984, pp. 177-186) and Amemiya (1985, pp. 203-207; 1977a) examine this model.
18The method of maximum likelihood estimation is developed in Chapter 17.
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log-likelihood function are
dln L zn: Ej
= Xi —_—
op Py o?f;

dln L
302 204 Z Z (202)<_ - 1> (11-20)

321L=§;<%)(%—1><%)&~

Since El[¢;|x;,2z;] = 0 and E[e? |x;,2] = o2 f, it is clear that all derivatives have
expectation zero as required. The maximum likelihood estimators are those values
of B,0?, and « that simultaneously equate these derivatives to zero. The likelihood
equations are generally highly nonlinear and will usually require an iterative solution.

Let G be the n x M matrix with ith row equal to 3f;/da’ = g/ and let i denote an
n x 1 column vector of 1s. The asymptotic covariance matrix for the maximum likelihood
estimator in this model is

, - [(/edxeIX 0 0 '
0-In L ]
—-E = (14 n/Qo*) /)i G| |
ayay’
(14 1/QeH)HG'R7 N (1/2G'272G
(11-21)

where y’ = [’, 02, a’]. (One convenience is that terms involving 82 f; /dade’ fall out of
the expectations. The proof is considered in the exercises.)

From the likelihood equations, it is apparent that for a given value of «, the solution
for B is the GLS estimator. The scale parameter, o2, is ultimately irrelevant to this
solution. The second likelihood equation shows that for given Values of B and &, o2 will
be estimated as the mean of the squared generalized residuals, 62 = (1 /3 —

x'8)/ f,]2. This term is the generalized sum of squares. Finally, there is no general
solutlon to be found for the estimator of a; it depends on the model. We will examine
two examples. If o is only a single parameter, then it may be simplest just to scan a range
of values of & to locate the one that, with the associated FGLS estimator of 8, maximizes
the log-likelihood. The fact that the Hessian is block diagonal does provide an additional
convenience. The parameter vector 8 may always be estimated conditionally on [02, «]
and, likewise, if B is given, then the solutions for o2 and & can be found conditionally,
although this may be a complicated optimization problem. But, by going back and
forth in this fashion, as suggested by Oberhofer and Kmenta (1974), we may be able
to obtain the full solution more easily than by approaching the full set of equations
simultaneously.

11.6.3 MODEL BASED TESTS FOR HETEROSCEDASTICITY

The tests for heteroscedasticity described in Section 11.4 are based on the behavior
of the least squares residuals. The general approach is based on the idea that if het-
eroscedasticity of any form is present in the disturbances, it will be discernible in the
behavior of the residuals. Those residual based tests are robust in the sense that they
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will detect heteroscedasticity of a variety of forms. On the other hand, their power is
a function of the specific alternative. The model considered here is fairly narrow. The
tradeoff is that within the context of the specified model, a test of heteroscedasticity will
have greater power than the residual based tests. (To come full circle, of course, that
means that if the model specification is incorrect, the tests are likely to have limited or
no power at all to reveal an incorrect hypothesis of homoscedasticity.)

Testing the hypothesis of homoscedasticity using any of the three standard meth-
ods is particularly simple in the model outlined in this section. The trio of tests for
parametric models is available. The model would generally be formulated so that the
heteroscedasticity is induced by a nonzero «. Thus, we take the test of Hy : @ = 0 to be
a test against homoscedasticity.

Wald Test The Wald statistic is computed by extracting from the full parameter vector
and its estimated asymptotic covariance matrix the subvector & and its asymptotic
covariance matrix. Then,

= &'{Est.Asy. Var[a]} &

Likelihood Ratio Test The results of the homoscedastic least squares regression are
generally used to obtain the initial values for the iterations. The restricted log-likelihood
value is a by-product of the initial setup; log-Lg = —(n/2)[1 +1n 27 + In(e’e/ n)]. The
unrestricted log-likelihood, log- Ly, is obtained as the objective function for the estima-
tion. Then, the statistic for the test is

LR = —2(In-Lg — In-Ly].

Lagrange Multiplier Test To set up the LM test, we refer back to the modelin (11-19)-
(11-21). At the restricted estimates ¢ = 0, 8 = b, 02 = e’e/n (not n — K), f. = 1 and
(0) = I. Thus, the first derivatives vector evaluated at the least squares estimates is

dln L

aI;ls (B=b,o2=¢e/na=0) =
oln L

1 (B=b,c>=¢e/na=0 =

do2
dlnL s "1/ € 1

= —=¢ N = = — ——) ;= —V;8;.

o (B=Db,0" =¢€e/n,a=0) EZ(e'e/n )g SUig

i=1 i=1

The negative expected inverse of the Hessian, from (11-21) is

2 -1 [(1/eHXX 0 0
<_E{§ h; l::| ) = (1 4 n/(2c%) [1/(202)]g = {_E[H]}_l
Y oy a=0 o [1/(20,2)]gl (I/Z)G’G -

whereg= 3" g and G'G = ) ", g;g. The LM statistic will be

oln L oln L

LM=[ )(y—bee/nO)}{ E[H]}” [ \(y bee/nﬁ)]
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With a bit of algebra and using (B-66) for the partitioned inverse, you can show that
this reduces to

-1
1 n n n
tv= {zg} [z@,» - gy} {zg}
i=1

i=1 i=1

This result, as given by Breusch and Pagan (1980), is simply one half times the regression
sum of squares in the regression of v; on a constant and g;. This actually simplifies
even further if, as in the cases studied by Bruesch and Pagan, the variance function is
fi = f(Za) where f(z;0) = 1. Then, the derivative will be of the form g; = r(z\«)z; and
it will follow that r;(z;0) = a constant. In this instance, the same statistic will result from
the regression of v; on a constant and z; which is the result reported in Section 11.4.3.
The remarkable aspect of the result is that the same statistic results regardless of the
choice of variance function, so long as it satisfies f; = f(z,«) where f(z/0) = 1. The
model studied by Harvey, for example has f; = exp(z/«),s0 g = z; whena = 0.

Example 11.4 Two-Step Estimation of a Heteroscedastic Regression
Table 11.2 lists weighted least squares and two-step FGLS estimates of the parameters of
the regression model in Example 11.1 using various formulations of the scedastic function.
The method used to compute the weights for weighted least squares is given below each
model formulation. The procedure was iterated to convergence for the model 62 = o2z —
convergence required 13 iterations. (The two-step estimates are those computed by the first
iteration.) ML estimates for this model are also shown. As often happens, the iteration pro-
duces fairly large changes in the estimates. There is also a considerable amount of variation
produced by the different formulations.

For the model f; = z¢, the concentrated log-likelihood is simple to compute. We can find
the maximum likelihood estimate for this model just by scanning over a range of values for
a. For any ¢, the maximum likelihood estimator of 8 is weighted least squares, with weights
w; = 1/z*. For our expenditure model, we use income for z;. Figure 11.2 shows a plot of the
log-likelihood function. The maximum occurs at « = 3.65. This value, with the FGLS estimates
of B, is shown in Table 11.2. ~

TABLE 11.2 Two-Step and Weighted Least Squares Estimates

Constant Age OwnRent  Income  Income’

o} =02 (OLS) est.  —237.15 -3.0818 27.941 234.35 —14.997
s.e. 199.35 5.5147 82922 80.366 7.4693

of = ol (WLS) est.  —181.87 —2.9350  50.494 202.17 -12.114
S.€. 165.52 46033  69.879 76.781 8.2731
o} = ol I? (WLS) est. —114.11 —2.6942  60.449 158.43 —7.2492
S.e. 139.69 3.8074  58.551 76.392 9.7243
o} = oZexp(za) est. —117.88 —1.2337  50.950 145.30 —7.9383
(lne?onz; = (1,In L))  se. 101.39 25512 52.814 46.363 3.7367

o? =027 (2 Step) est.  —193.33 —2.9579  47.357 208.86 —12.769
(Inef on (1,1nz)) s.e. 171.08 4.7627 72139 77.198 8.0838
(iterated) est.  —130.38 —2.7754  59.126 169.74 —8.5995
(o =1.7623) S.€. 145.03 39817  61.0434 76.180 9.3133
(ML) est. —-19.929 -1.7058  58.102 75.970 4.3915

(o = 3.6513) s.e. 113.06 277581  43.5084 81.040 13.433
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~480
—490 /

=500 /
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Note that this value of « is very different from the value we obtained by iterative regression
of the logs of the squared residuals on log income. In this model, g = f; Inz. If we insert this
into the expression for 3 In L /3« and manipulate it a bit, we obtain the implicit solution

n 82
E < 2’ﬂ—1>|nz;=0.
02z

i=1

(The ‘5 disappears from the solution.) For given values of o2 and 8, this result provides only
an implicit solution for «. In the next section, we examine a method for finding a solution.
At this point, we note that the solution to this equation is clearly not obtained by regression
of the logs of the squared residuals on log z;. Hence, the strategy we used for the two-step
estimator does not seek the maximum likelihood estimator.

11.7 APPLICATIONS

This section will present two common applications of the heteroscedastic regression
model, Harvey’s model of multiplicative heteroscedasticity and a model of groupwise
heteroscedasticity that extends to the disturbance variance some concepts that are usu-
ally associated with variation in the regression function.

11.7.1 MULTIPLICATIVE HETEROSCEDASTICITY

Harvey’s (1976) model of multiplicative heteroscedasticity is a very flexible, general
model that includes most of the useful formulations as special cases. The general for-
mulation is

2 2
o = o’ exp(z;a).
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The model examined in Example 11.4 has z; = Iln income;. More generally, a model with
heteroscedasticity of the form '

M
2 —_— 2 (4%
of =[] ain
m=1

results if the logs of the variables are placed in z;. The groupwise heteroscedasticity
model described below is produced by making z; a set of group dummy variables (one
must be omitted). In this case, o2 is the disturbance variance for the base group whereas
for the other groups, o2 = o2 exp(ey).

We begin with a useful simplification. Let z; include a constant term so that z, =
[1, q}], where q; is the original set of variables, and let y’ = [Ino?, @’]. Then, the model
is simply o/ = exp(y'z;). Once the full parameter vector is estimated, exp(y;) provides
the estimator of o2. (This estimator uses the invariance result for maximum likelihood
estimation. See Section 17.4.5.d.)

The log-likelihood is
n 1< 1 &?
= 2
InL=-2InQ7) - E;lnoi - E 3 —2
n 1< 1
=) —=SZy -
2 In(2) 2 gz,y 2 g exp(z y)
The likelihood equations are
dlnL z &
= — =X le=0,
o8 ; exp(z/y) °T

dln L
oy _Z: (exp(zy) 1)20'

For this model, the method of scoring turns out to be a particularly convenient way to
maximize the log-likelihood function. The terms in the Hessian are

8%In L 1

=- =-X'Q7'X,
apop Z eXp(z h

2InL _ Z
By

3%In L 1< g2

i ot

—=y — 7z
oy 24 expziy)

eXP(Z "

The expected value of 32In L/38 3y’ is 0 since E[&;|x;, z;] = 0. The expected value of
the fraction in 3% In L/3ydy’ is E[¢?/o?|x;,z;] = 1. Let § = [B, y]. Then
9In L Xelx o
—E(—) =
38 38

v 1zz|=H
2
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The scoring method is
8141 =8, — Hflgz,

where §; (ie, B,,y,, and ) is the estimate at iteration ¢, g is the two-part vector of
first derivatives [d In L/3B;, 3 In L/9y!]’ and H, is partitioned likewise. Since H, is block
diagonal, the iteration can be written as separate equations:

Bii =B+ X' X)X, e)
=8, + X', X)X (y-XB,)
= (X’SZ;IX)‘IX’Qt‘ly (of course).

Therefore, the updated coefficient vector g, | is computed by FGLS using the previously
computed estimate of y to compute . We use the same approach for y:

1 i A e} )
22 “ exp(z}y) )

1

Y1 =v.+REZZD)]

The 2 and % cancel. The updated value of y is computed by adding the vector of slopes
in the least squares regression of [¢2/exp(z,y) — 1] on z; to the old one. Note that
the correction is 2(Z'Z)'Z/(d1n L/3y), so convergence occurs when the derivative
is zero.

The remaining detail is to determine the starting value for the iteration. Since any
consistent estimator will do, the simplest procedure is to use OLS for 8 and the slopes in
aregression of the logs of the squares of the least squares residuals on z; for y. Harvey
(1976) shows that this method will produce an inconsistent estimator of y; = Ino?,
but the inconsistency can be corrected just by adding 1.2704 to the value obtained.?
Thereafter, the iteration is simply:

Estimate the disturbance variance o with exp(yz;).

Compute B, ,; by FGLS.2

Update y, using the regression described in the preceding paragraph.

. Compute d;1 = [B,,1, ¥,11] — [B:, ¥.]- If d, 1 is large, then return to step 1.

S W N

If d, ., at step 4 is sufficiently small, then exit the iteration. The asymptotic covariance
matrix is simply —H !, which is block diagonal with blocks

Asy. Var[Byy ] = (X'Q71X)7,
Asy. Var[py ] = 2(Z'Z) L.

If desired, then 62 = exp(f) can be computed. The asymptotic variance would be
[exp(y1) P (Asy. Var[p1,mL])-

1%He also presents a correction for the asymptotic covariance matrix for this first step estimator of y.

The two-step estimator obtained by stopping here would be fully efficient if the starting value for y were
consistent, but it would not be the maximum likelihood estimator.
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ABLE 11.3. . Multiplicative Heteroscedasticity Modei ..

Constant Age OwnRent Income Incomé’

Ordinary Least Squares Estimates
Coefficient —237.15 —3.0818 27941 234.35 —14.997
Standard error 199.35 5.5147 82922 80.366 7.469

t ratio -11 —0.559 0.337 2.916 —2.008
R = 0.243578, s = 284.75080, Ln-L = —506.488 ‘

Maximum Likelihood Estimates (standard errors for estimates of y in parentheses)

Coefficient —58.437 —0.37607 33.358 96.823 —3.3008
Standard error 62.098 0.55000 37.135 31.798 2.6248
t ratio —0.941 —0.684 0.898 3.045 —1.448

[exp(c)]V? = 0.9792(0.79115), ¢; = 5.355(0.37504), c; = —0.56315(0.036122)
Ln-L = —465.9817, Wald = 251.423, LR = 81.0142, LM = 115.899

Example 11.5 Multiplicative Heteroscedasticity
Estimates of the regression model of Example 11.1 based on Harvey’s model are shown in
Table 11.3 with the ordinary least squares results. The scedastic function is

of = exp(y1 + yzincome; + ysincome?).

The estimates are consistent with the earlier results in suggesting that Income and its square
significantly explain variation in the disturbance variances across observations. The 95 per-
cent critical value for a chi-squared test with two degrees of freedom is 5.99, so all three test
statistics lead to rejection of the hypothesis of homoscedasticity.

11.7.2 GROUPWISE HETEROSCEDASTICITY
A groupwise heteroscedastic regression has structural equations
yi=xf+e, i=1,...,n
Elgix]=0, i=1,...,n.

The n observations are grouped into G groups, each with n, observations. The slope
vector is the same in all groups, but within group g:

Var[e;, | Xi6] = agz, i=1,...,n,.
If the variances are known, then the GLS estimator is

~ G 1 o G 1
B=> (;) XXl [D (;) X,ye| - (11-22)

g=1 8 g=1 g

Since X{y, = X, X,b,. where by is the OLS estimator in the gth subset of observations,
-1 -1
X G (1 G /1 G G G
B= Z(?)X,gxg Z(ﬁ)xéx«?bg = ng ngbg =Zngg.
g=1 \ "8 g=1 \ ¢ g=I1 g=1 g=1

This result is a matrix weighted average of the G least squares estimators. The weighting
matrices are W, = [ch’zl (Var[bg])fl} ! (Var[bg])_l. The estimator with the smaller
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covariance matrix therefore receives the larger weight. (If X,, is the same in every group,
then the matrix W, reduces to the simple scalar, w, = ho/ > he where hy = l/ag.)
The preceding is a useful construction of the estimator, but it relies on an algebraic
result that might be unusable. If the number of observations in any group is smaller than
the number of regressors, then the group specific OLS estimator cannot be computed.
But, as can be seen in (11-22), that is not what is needed to proceed; what is needed are
the weights. As always, pooled least squares is a consistent estimator, which means that
using the group specific subvectors of the OLS residuals,
’
= % - (11-23)
g

A2

g
provides the needed estimator for the group specific disturbance variance. Thereafter,
(11-22) is the estimator and the inverse matrix in that expression gives the estimator of
the asymptotic covariance matrix.

Continuing this line of reasoning, one might consider iterating the estimator by
returning to (11-23) with the two-step FGLS estimator, recomputing the weights, then
returning to (11-22) to recompute the slope vector. This can be continued until conver-
gence. It can be shown [see Oberhofer and Kmenta (1974)] that so long as (11-23) is
used without a degrees of freedom correction, then if this does converge, it will do so at
the maximum likelihood estimator (with normally distributed disturbances). Another
method of estimating this model is to treat it as a form of Harvey’s model of multiplica-
tive heteroscedasticity where z; is a set (minus one) of group dummy variables.

For testing the homoscedasticity assumption in this model, one can use a likelihood
ratio test. The log-likelihood function, assuming homoscedasticity, is

In Ly = —(n/2)[1 + In 27 + In(e’e/n)]

where n =}, n, is the total number of observations. Under the alternative hypothesis
of heteroscedastlclty across G groups, the log -likelihood function is

n , 1 o
Inly=—5 @) - 5 an Inof — =" Z CALAE (11-24)

g=1 g=1 i=1

\S]

The maximum likelihood estimators of o and o are e’e/n and 6 from (11-23), respec-
tively. The OLS and maximum likelihood estimators of 8 are used for the slope vector
under the null and alternative hypothesis, respectively. If we evaluate In Lj and In Ly
at these estimates, then the likelihood ratio test statistic for homoscedasticity is

G
—2(nLo—InL) =nlns* = nglns}.

Under the null hypothesis, the statistic has a limiting chi-squared distribution with G — 1
degrees of freedom.

Example 11.6 Heteroscedastic Cost Function for Airline Production
To illustrate the computations for the groupwise heteroscedastic model, we will reexamine
the cost model for the total cost of production in the airline industry that was fit in Example 7.2.
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ABLE 11.4 Least Squares and Maximum Likelihood Estimates of

a Groupwise Heteroscedasticity Model
Least Squares: Homoscedastic Maximum Likelihood

Estimate Std. Error t Ratio Estimate Std. Error t Ratio
B1 9.706 0.193 50.25 10.057 0.134 74.86
B 0418 —.0152 27.47 0.400 0.0108 37.12
B —1.070 0.202 —5.30 -1.129 0.164 —7.87
B4 0.919 0.0299 30.76 0.928 0.0228 40.86
8 —0.0412 0.0252 —-1.64 —0.0487 0.0237 -2.06
33 —0.209 0.0428 —4.88 —0.200 0.0308 —6.49
8y 0.185 0.0608 3.04 0.192 0.0499 3.852
85 0.0241 0.0799 0.30 0.0419 0.0594 0.71
86 0.0871 0.0842 1.03 0.0963 0.0631 1.572
Y1 —7.088 0.365 —19.41
2 , 2.007 0.516 3.89
V3 0.758 0.516 1.47
Va4 2.239 0.516 4.62
Vs 0.530 0.516 1.03
Y i 1.053 0.516 2.04
o? 0.001479 0.0008349
03 0.004935 0.006212
ol 0.001888 : 0.001781
o} 0.005834 0.009071
ol E - 0.002338 P : 0.001419
ol 0.003032 , 0.002393 -

R’ =0.997, s? = 0.003613, In L = 130.0862 In L = 140.7591

(A description of the data appears in the earlier example.) For a sample of six airlines observed
annually for 15 years, we fit the cost function

Incost; = 81 + B2 Inoutput, + B3 load factor; + g4 In fuel price,
8> Firmy + 85 Firms + 84 Firmy + 85 Firms + 8g Firmg + 5.

Output is measured in “revenue passenger miles.” The load factor is a rate of capacity
utilization; it is the average rate at which seats on the airline’s planes are filled. More complete
models of costs include other factor prices (materials, capital) and, perhaps, a guadratic term
in log output to allow for variable economies of scale. The “firm;” terms are firm specific
dummy variables.

Ordinary least squares regression produces the set of results at the left side of Table 11.4.
The variance estimates shown at the bottom of the table are the firm specific variance
estimates in (11-23). The results so far are what one might expect. There are substantial
economies of scale; e.s.; = (1/0.919) — 1 = 0.088. The fuel price and load factors affect
costs in the predictable fashions as well. (Fuel prices differ because of different mixes of
types and regional differences in supply characteristics.) The second set of results shows
the model of groupwise heteroscedasticity. From the least squares variance estimates in the
first set of results, which are quite different, one might guess that a test of homoscedasticity
would lead to rejection of the hypothesis. The easiest computation is the likelihood ratio test.
Based on the log likelihood functions in the last row of the table, the test statistic, which has
a limiting chi-squared distribution with 5 degrees of freedom, equals 21.3458. The critical
value from the table is 11.07, so the hypothesis of homoscedasticity is rejected.
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11.8 AUTOREGRESSIVE CONDITIONAL
HETEROSCEDASTICITY

Heteroscedasticity is often associated with cross-sectional data, whereas time series are
usually studied in the context of homoscedastic processes. In analyses of macroeconomic
data, Engle (1982, 1983) and Cragg (1982) found evidence that for some kinds of data,
the disturbance variances in time-series models were less stable than usually assumed.
Engle’s results suggested that in models of inflation, large and small forecast errors
appeared to occur in clusters, suggesting a form of heteroscedasticity in which the
variance of the forecast error depends on the size of the previous disturbance. He
suggested the autoregressive, conditionally heteroscedastic, or ARCH, model as an
alternative to the usual time-series process. More recent studies of financial markets
suggest that the phenomenon is quite common. The ARCH model has proven to be
useful in studying the volatility of inflation [Coulson and Robins (1985)], the term
structure of interest rates [Engle, Hendry, and Trumbull (1985)], the volatility of stock
market returns [Engle, Lilien, and Robins (1987)], and the behavior of foreign exchange
markets [Domowitz and Hakkio (1985) and Bollerslev and Ghysels (1996)], to name
but a few. This section will describe specification, estimation, and testing, in the basic
formulations of the ARCH model and some extensions.?!

Example 11.7 Stochastic Volatility
Figure 11.3 shows Bollerslev and Ghysel’s 1974 data on the daily percentage nominal return
for the Deutschmark/Pound exchange rate. (These data are given in Appendix Table F11.1.)
The variation in the series appears to be fluctuating, with several clusters of large and small
movements. ‘

11.8.1 THE ARCH(1) MODEL
The simplest form of this model is the ARCH(1) model,

=pB'x; + &

Yr
, (11-25)
& = Uy /oo + 018,2_1,

where y, is distributed as standard normal.?? It follows that E[e, | x,, &_1] = 0, so that
Ele; |x,] = 0and E[y, | x,] = B'x,. Therefore, this model is a classical regression model.
But

Var[e, | &-1] = E[st2 ] e,_l] = E[u,z] [ao + ‘115:2_1] =qp + oqs,z_l,

S0 ¢, is conditionally heteroscedastic, not with respect to x, as we considered in the
preceding sections, but with respect to &_;. The unconditional variance of &, is

Var[e,] = Var{E[e, | &-1]} + E{ Varle, | &,-1]} = oo + a1 E[e]_,] = o +  Var[e,_q].

2 Engle and Rothschild (1992) give a recent survey of this literature which describes many extensions. Mills
(1993) also presents several applications. See, as well, Bollerslev (1986) and Li, Ling, and McAleer (2001).
See McCullough and Renfro (1999) for discussion of estimation of this model.

22The assumption that «, has unit variance is not a restriction. The scaling implied by any other variance
would be absorbed by the other parameters.
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- 11.3 Nominal Exchange Rate Returns:

If the process generating the disturbances is weakly (covariance) stationary (see Defi-
nition 12.2),7 then the unconditional variance is not changing over time so

oo

Var[g;] = Var[e;-1] = ap + a3 Var[e;.1] = 1o
-

For this ratio to be finite and positive, |«;| must be less than 1. Then, unconditionally,

& is distributed with mean zero and variance o> = /(1 — ;). Therefore, the model

obeys the classical assumptions, and ordinary least squares is the most efficient linear

unbiased estimator of S.

But there is a more efficient nonlinear estimator. The log-likelihood function for
this model is given by Engle (1982). Conditioned on starting values y; and xy (and &),
the conditional log-likelihood for observations ¢t =1, ..., T is the one we examined in
Section 11.6.2 for the general heteroscedastic regression model [see (11-19)],

1 T
lnL———ln(2n)——Zln ao+a18,1 EZ . &=y —B'x.
P P 0+0118,1

(11-26)

Maximization of log L can be done with the conventional methods, as discussed in
Appendix E.?*

23This discussion will draw on the results and terminology of time series analysis in Section 12.3 and Chapter 20.
The reader may wish to peruse this material at this point.

2Engle (1982) and Judge et al. (1985, pp. 441-444) suggest a four-step procedure based on the method of
scoring that resembles the two-step method we used for the multiplicative heteroscedasticity model in Sec-
tion 11.6. However, the full MLE is now incorporated in most modern software, so the simple regression based
methods, which are difficult to generalize, are less attractive in the current literature. But, see McCullough
and Renfro (1999) and Fiorentini, Calzolari and Panattoni (1996) for commentary and some cautions related
to maximum likelihood estimation.
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11.8.2 ARCH(q), ARCH-IN-MEAN AND GENERALIZED ARCH
MODELS

The natural extension of the ARCH(1) model presented before is a more general model
with longer lags. The ARCH(q) process,

0,2 =ap+ oqe,zﬁl + azs,z_z +--- 4+ aqstz_q,

is a gth order moving average [MA(q)] process. (Much of the analysis of the model par-
allels the results in Chapter 20 for more general time series models.) [Once again, see
Engle (1982).] This section will generalize the ARCH(g) model, as suggested by Boller-
slev (1986), in the direction of the autoregressive-moving average (ARMA) models of
Section 20.2.1. The discussion will parallel his development, although many details are
omitted for brevity. The reader is referred to that paper for background and for some
of the less critical details.

The capital asset pricing model (CAPM) is discussed briefly in Chapter 14. Among
the many variants of this model is an intertemporal formulation by Merton (1980} that
suggests an approximate linear relationship between the return and variance of the
market portfolio. One of the possible flaws in this model is its assumption of a con-
stant variance of the market portfolio. In this connection, then, the ARCH-in-Mean, or
ARCH-M, model suggested by Engle, Lilien, and Robins (1987) is a natural extension.
The model states that

o~

= ﬁ’xt + 5(7,2 + &,

Among the interesting implications of this modification of the standard model is that
under certain assumptions, § is the coefficient of relative risk aversion. The ARCH-M
model has been applied in a wide variety of studies of volatility in asset returns, including
the daily Standard and Poor’s Index [French, Schwert, and Stambaugh (1987)] and
weekly New York Stock Exchange returns [Chou (1988)]. A lengthy list of applications
is given in Bollerslev, Chou, and Kroner (1992).

The ARCH-M model has several noteworthy statistical characteristics. Unlike the
standard regression model, misspecification of the variance function does impact on the
consistency of estimators of the parameters of the mean. [See Pagan and Ullah (1988)
for formal analysis of this point.] Recall that in the classical regression setting, weighted
least squares is consistent even if the weights are misspecified as long as the weights are
uncorrelated with the disturbances. That is not true here. If the ARCH part of the model
is misspecified, then conventional estimators of 8 and § will not be consistent. Bollerslev,
Chou, and Kroner (1992) list a large number of studies that called into question the
specification of the ARCH-M model, and they subsequently obtained quite different
results after respecifying the model. A closely related practical problem is that the
mean and variance parameters in this model are no longer uncorrelated. In analysis
up to this point, we made quite profitable use of the block diagonality of the Hessian
of the log-likelihood function for the model of heteroscedasticity. But the Hessian for
the ARCH-M model is not block diagonal. In practical terms, the estimation problem
cannot be segmented as we have done previously with the heteroscedastic regression
model. All the parameters must be estimated simultaneously.
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The model of generalized autoregressive conditional heteroscedasticity (GARCH)
is defined as follows.” The underlying regression is the usual one in (11-25). Conditioned
on an information set at time t, denoted ¥, the distribution of the disturbance is assumed
to be

& | W ~ N[O, atz],
where the conditional variance is
02 =g+ Slat L+ 52 o+t 81]0,2_[, + alstz_l + azstz_z + -4 aqgtz_q. (11-27)

Define

— 2 2 2 2 2 2 /
Z, = []., ot—l’ 0,_2, ey o[~p’ 81_1, 81_2, ey Bt_q]

and

Yy = [Ol(), 81, 52, ey (Sp,al, ce ,dq]l = [ao,al, a']’.
Then

2 .7
Ut =Y.

Notice that the conditional variance is defined by an autoregressive-moving average
[ARMA (p, ¢)] process in the innovations &2, exactly as in Section 20.2.1. The difference
here is that the mean of the random variable of interest y; is described completely by
a heteroscedastic, but otherwise ordinary, regression model. The conditional variance,
however, evolves over time in what might be a very complicated manner, depending on
the parameter values and on p and g. The model in (11-27) is a GARCH(p, ¢) model,
where p refers, as before, to the order of the autoregressive part.”® As Bollerslev (1986)
demonstrates with an example, the virtue of this approach is that a GARCH model
with a small number of terms appears to perform as well as or better than an ARCH
model with many.

The stationarity conditions discussed in Section 20.2.2 are important in this context
to ensure that the moments of the normal distribution are finite. The reason is that
higher moments of the normal distribution are finite powers of the variance. A normal
distribution with variance o has fourth moment 3¢/, sixth moment 15¢°, and so on.
[The precise relationship of the even moments of the normal distribution to the vari-
ance is pox = (02)*(2k)!/(k!2%).] Simply ensuring that o is stable does not ensure that
higher powers are as well.?” Bollerslev presents a useful figure that shows the conditions
needed to ensure stability for moments up to order 12 for a GARCH(1, 1) model and
gives some additional discussion. For example, for a GARCH(1, 1) process, for the
fourth moment to exist, 3011 + 20181 + 82 must be less than 1. -

35 As have most areas in time-series econometrics, the line of literature on GARCH models has progressed
rapidly in recent years and will surely continue to do so. We have presented Bollerslev’s model in some detail,
despite many recent extensions, not only to introduce the topic as a bridge to the literature, but also because it
provides a convenient and interesting setting in which to discuss several related topics such as double-length
regression and pseudo—maximum likelihood estimation.

2We have changed Bollerslev’s notation slightly so as not to conflict with our previous presentation. He used
B instead of our § in (18-25) and b instead of our 8 in (18-23).

2TThe conditions cannot be imposed a priori. In fact, there is no nonzero set of parameters that guarantees
stability of all moments, even though the normal distribution has finite moments of all orders. As such, the
normality assumption must be viewed as an approximation. '
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It is convenient to write (11-27) in terms of polynomials in the lag operator:
o} =g+ D(L)o? + A(L)e2. '

As discussed in Section 20.2.2, the stationarity condition for such an equation is that the
roots of the characteristic equation, 1 — D(z) = 0, must lic outside the unit circle. For the
present, we will assume that this case is true for the model we are considering and that
A1) + D(1) <1.[This assumption is stronger than that needed to ensure stationarity in a
higher-order autoregressive model, which would depend only on D(L).] The implication
is that the GARCH process is covariance stationary with E [¢,] = 0 (unconditionally),
Var[e, ] = ap/[1 — A1) — D(1)], and Covle,, &;] = O for all r # 5. Thus, unconditionally
the model is the classical regression model that we examined in Chapters 2-8.

The usefulness of the GARCH specification is that it allows the variance to evolve
over time in a way that is much more general than the simple specification of the ARCH
model. The comparison between simple finite-distributed lag models and the dynamic
regression model discussed in Chapter 19 is analogous. For the example discussed in his
paper, Bollerslev reports that although Engle and Kraft’s (1983) ARCH(8) model for
the rate of inflation in the GNP deflator appears to remove all ARCH effects, a closer
look reveals GARCH effects at several lags. By fitting a GARCH (1, 1) model to the
same data, Bollerslev finds that the ARCH effects out to the same eight-period lag as fit
by Engle and Kraft and his observed GARCH effects are all satisfactorily accounted for.

11.8.3 MAXIMUM LIKELIHOOD ESTIMATION
OF THE GARCH MODEL

Bollerslev describes a method of estimation based on the BHHH algorithm. As he
shows, the method is relatively simple, although with the line search and first derivative
method that he suggests, it probably involves more computation and more iterations
than necessary. Following the suggestions of Harvey (1976), it turns out that there is a
simpler way to estimate the GARCH model that is also very illuminating, This model is
actually very similar to the more conventional model of multiplicative heteroscedasticity
that we examined in Section 11.7.1.

For normally distributed disturbances, the log-likelihood for a sample of T obser-
vations is ‘

T T T
1 2 & 28
InL= ,Z:;_E [In(2n) +Ine? + 0_,2] = ;m £.(0) = ;zl(()),

where e, =y, —x/fand 0 = (B', oy, &', 8') = (B’, y’)’. Derivatives of In L are obtained
by summation. Let /; denote In f; (). The first derivatives with respect to the variance
parameters are

al, 1)1 e |07 1 (/1) da? (& 171
ay 2 lo2 " 2 3y —2\o2) 3y Loz 1) =51 -3 ) &v =bun
Y 2 | o; (a2) oy 2 \o7) 3y \o; 2 \ o

(11-28)

*There are three minor errors in Bollerslev’s derivation that we note here to avoid the apparent inconsis-
tencies. In his (22), 3k, should be 1k, ' In (23), —2h; should be —h; 2. In (28), i 8h/3w should, in each
case, be (1/h) dh/3w. [In his (8), @y should be ag + a3, but this has no implications for our derivation.]
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Note that E[v;] = 0. Suppose, for now, that there are no regression parameters.
Newton’s method for estimating the variance parameters would be

=9 —H'g (11-29)

where H indicates the Hessian and g is the first derivatives vector. Following Harvey’s
suggestion (see Section 11.7.1), we will use the method of scoring instead. To do this, we
make use of E[v;]=0and E[¢]/0?] =1. After taking expectations in (11-28), the iter-
ation reduces to a linear regression of v,, = (1/+/2)v, on regressors w,, = (1/ V2)g /o2,
That is,

. . ; dlnL
P =P [WW] Wiy, =+ [W;W*]‘1< 5 ) (11-30)
b g
where row t of W, is w;f. The iteration has converged when the slope vector is zero,
which happens when the first derivative vector is zero. When the iterations are
complete, the estimated asymptotic covariance matrix is simply

Est.Asy. Var[y] = [W.W,] !

based on the estimated parameters.

The usefulness of the result just given is that E[3%In L/dy 98'] is, in fact, zero.
Since the expected Hessian is block diagonal, applying the method of scoring to the full
parameter vector can proceed in two parts, exactly as it did in Section 11.7.1 for the
multiplicative heteroscedasticity model. That is, the updates for the mean and variance
parameter vectors can be computed separately. Consider then the slope parameters, 8.
The same type of modified scoring method as used earlier produces the iteration

T , nA-lrr
o _ g [Sex 1(d) (4 xe  1(d
BT =8+ [Z Jtz +2<0[2 012 Z 012 +2 022 Ut

t=1 t=1

T ' -1
XX, 1<d,>(d,) (alnL)
+=-l=]l—= (11-31)
tzz; o 2\o2/\o? B

=ﬂ,\i+hi,

=p +

which has been referred to as a double-length regression. [See Orme (1990) and
Davidson and MacKinnon (1993, Chapter 14).] The update vector h' is the vector of
slopes in an augmented or double-length generalized regression,

b = [Ce!C]l[C'e a], (11-32)

where Cis a 2T x K matrix whose first 7 rows are the X from the original regression
model and whose next T rows are (1/ﬁ)d;/az, t=1,...,T;aisa2T x 1 vector whose
first T elements are ¢, and whose next T elements are (1 / \/i)vl /0[2, t=1,...,T;and
Q is a diagonal matrix with 1/02 in positions 1, ..., T and ones below observation 7.
At convergence, [C'® 'C]~! provides the asymptotic covariance matrix for the MLE.
The resemblance to the familiar result for the generalized regression model is striking,
but note that this result is based on the double-length regression.
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The iteration is done simply by computing the update vectors to the current pa-
rameters as defined above.”” An important consideration is that to apply the scoring
method, the estimates of § and y are updated simultaneously. That is, one does not use
the updated estimate of y in (11-30) to update the weights for the GLS regression to
compute the new B in (11-31). The same estimates (the results of the prior iteration)
are used on the right-hand sides of both (11-30) and (11-31). The remaining problem
is to obtain starting values for the iterations. One obvious choice is b, the OLS estima-
tor, for B, e’e/ T =5 for «y, and zero for all the remaining parameters. The OLS slope
vector will be consistent under all specifications. A useful alternative in this context
would be to start e at the vector of slopes in the least squares regression of €2, the
squared OLS residual, on a constant and g lagged values.’® As discussed below, an LM
test for the presence of GARCH effects is then a by-product of the first iteration. In
principle, the updated result of the first iteration is an efficient two-step estimator of
all the parameters. But having gone to the full effort to set up the iterations, nothing is
gained by not iterating to convergence. One virtue of allowing the procedure to iterate
to convergence is that the resulting log-likelihood function can be used in likelihood
ratio tests.

11.8.4 TESTING FOR GARCH EFFECTS

The preceding development appears fairly complicated. In fact, it is not, since at each
step, nothing more than a linear least squares regression is required. The intricate part
of the computation is setting up the derivatives. On the other hand, it does take a fair
amount of programming to get this far.>* As Bollerslev suggests, it might be useful to
test for GARCH effects first.

The simplest approach is to examine the squares of the least squares residuals.
The autocorrelations (correlations with lagged values) of the squares of the residuals
provide evidence about ARCH effects. An LM test of ARCH(q) against the hypothesis
of no ARCH effects [ARCH(0), the classical model] can be carried out by computing
x>=TR? in the regression of e} on a constant and ¢ lagged values. Under the null
hypothesis of no ARCH effects, the statistic has a limiting chi-squared distribution with
q degrees of freedom. Values larger than the critical table value give evidence of the
presence of ARCH (or GARCH) effects.

Bollerslev suggests a Lagrange multiplier statistic that is, in fact, surprisingly simple
to compute. The LM test for GARCH(p, 0) against GARCH(p, q) can be carried out
by referring T times the R? in the linear regression defined in (11-30) to the chi-squared
critical value with ¢ degrees of freedom. There is, unfortunately, an indeterminacy in
this test procedure. The test for ARCH(q) against GARCH(p, q) is exactly the same
as that for ARCH(p) against ARCH(p + q). For carrying out the test, one can use as

28ee Fiorentini et al. (1996) on computation of derivatives in GARCH models.

H0A test for the presence of g ARCH effects against none can be carried out by carrying TR? from this
regression into a table of critical values for the chi-squared distribution. But in the presence of GARCH
effects, this procedure loses its validity.

3ISince this procedure is available as a preprogrammed procedure in many computer programs, including
TSP, E-Views, Stata, RATS, LIMDEP, and Shazam, this warning might itself be overstated.
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2 o oy g oo/ —ay —3)
Estimate —0.006190 0.01076 0.1531 0.8060 0.2631
Std. Error 0.00873 0.00312 0.0273 0.0302 0.594
t ratio —0.709 3.445 5.605 26.731 0.443

In L= —1106.61,In Lo, s = —1311.09, § = —0.01642, s? = 0.221128

starting values a set of estimates that includes § = 0 and any consistent estimators for
B and «. Then TR? for the regression at the initial iteration provides the test statistic.*

A number of recent papers have questioned the use of test statistics based solely
on normality. Wooldridge (1991) is a useful summary with several examples.

Example 11.8 GARCH Model for Exchange Rate Volatility
Bollerslev and Ghysels analyzed the exchange rate data in Example 11.7 using a GARCH(1, 1)
model,

Ye=u + Ety
E[gf l 81—1] = 0’
Varle; | & 4] = crf =g+ a18t2_1 + 80t2_1.

The least squares residuals for this model are simply & = y; — ¥. Regression of the squares
of these residuals on a constant and 10 lagged squared values using observations 11-1974
produces an R? = 0.025255. With T = 1964, the chi-squared statistic is 49.60, which is larger
than the critical value from the table of 18.31. We conclude that there is evidence of GARCH
effects in these residuals. The maximum likelihood estimates of the GARCH model are given
in Table 11.5. Note the resemblance between the OLS unconditional variance (0.221 128) and
the estimated equilibrium variance from the GARCH model, 0.2631.

11.8.5 PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION

We now consider an implication of nonnormality of the disturbances. Suppose that the
assumption of normality is weakened to only

2 4
lljt:| = 1, E l:8_t4

oy

Ele, | W] =0, E[

Et
— Y, | =« < o0,
Jt

where o is as defined earlier. Now the normal log-likelihood function is inappropriate.

In this case, the nonlinear (ordinary or weighted) least squares estimator would have the
properties discussed in Chapter 9. It would be more difficult to compute than the MLE
discussed earlier, however. It has been shown [see White (1982a) and Weiss (1982)]
that the pseudo-MLE obtained by maximizing the same log-likelihood as if it were

#These data have become a standard data set for the evaluation of software for estimating GARCH models.
The values given are the benchmark estimates. Standard errors differ substantially from one method to the
next. Those given are the Bollerslev and Wooldridge (1992) results. See McCullough and Renfro (1999).

FBollerslev argues that in view of the complexity of the computations involved in estimating the GARCH
model, it is useful to have a test for GARCH effects. This case is one (as are many other maximum likelihood
problems) in which the apparatus for carrying out the test is the same as that for estimating the model,
however. Having computed the LM statistic for GARCH effects, one can proceed to estimate the model just
by allowing the program to iterate to convergence. There is no additional cost beyond waiting for the answer.
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correct produces a consistent estimator despite the misspecification.>* The asymptotic
covariance matrices for the parameter estimators must be adjusted, however.

The general result for cases such as this one [see Gourieroux, Monfort, and Trognon
(1984)] is that the appropriate asymptotic covariance matrix for the pseudo-MLE of a
parameter vector § would be

Asy. Var[f] = H 'FH ™, (11-33)
where
2InlL
H=-E|——
[ao ao']
and

P | (50) (5 )]

(that is, the BHHH estimator), and In L is the used but inappropriate log-likelihood
function. For current purposes, H and F are still block diagonal, so we can treat the
mean and variance parameters separately. In addition, E [v,] is still zero, so the second
derivative terms in both blocks are quite simple. (The parts involving 3%02/3y 3y’ and
3%0?/3B 3B’ fall out of the expectation.) Taking expectations and inserting the parts
produces the corrected asymptotic covariance matrix for the variance parameters:

Asy. Var[ppyy g] = [W,W.]"'B'B[W.W,] ™},

where the rows of W* are defined in (18-30) and those of B are in (11-28). For the slope
parameters, the adjusted asymptotic covariance matrix would be

T
> bib

t=1

Asy. Var[BPMLE] = [C’SZ_l(:]-l [C'SZAC]_I,

where the outer matrix is defined in (11-31) and, from the first derivatives given in

(11-29) and (11-31),
x& 1 /v 35
b o2 2 <0,2> d:.

t

11.9 SUMMARY AND CONCLUSIONS

This chapter has analyzed one form of the generalized regression model, the model of
heteroscedasticity. We first considered least squares estimation. The primary result for

34White (1982a) gives some additional requirements for the true underlying density of &,. Gourieroux,
Monfort, and Trognon (1984) also consider the issue. Under the assumptions given, the expectations of
the matrices in (18-27) and (18-32) remain the same as under normality. The consistency and asymptotic
normality of the pseudo-MLE can be argued under the logic of GMM estimators.

3McCullough and Renfro (1999) examined several approaches to computing an appropriate asymptotic
covariance matrix for the GARCH model, inctuding the conventional Hessian and BHHH estimators and
three sandwich style estimators including the one suggested above, and two based on the method of scoring
suggested by Bollerslev and Wooldridge (1992). None stand out as obviously better, but the Bollerslev and
QMLE estimator based on an actual Hessian appears to perform well in Monte Carlo studies.
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least squares estimation is that it retains its consistency and asymptotic normality, but
some correction to the estimated asymptotic covariance matrix may be needed for ap-
propriate inference. The White estimator is the standard approach for this computation.
These two results also constitute the GMM estimator for this model. After examining
some general tests for heteroscedasticity, we then narrowed the model to some specific
parametric forms, and considered weighted (generalized) least squares and maximum
likelihood estimation. If the form of the heteroscedasticity is known but involves un-
known parameters, then it remains uncertain whether FGLS corrections are better than
OLS. Asymptotically, the comparison is clear, but in small or moderately sized samples,
the additional variation incorporated by the estimated variance parameters may off-
set the gains to GLS. The final section of this chapter examined a model of stochastic
volatility, the GARCH model. This model has proved especially useful for analyzing
financial data such as exchange rates, inflation, and market returns.

Key Terms and Concepts

¢ ARCH model ¢ [ agrange multiplier test ¢ Robustness to unknown
¢ ARCH-in-mean ¢ Heteroscedasticity heteroscedasticity
¢ Breusch—Pagan test e Likelihood ratio test * Stationarity condition
e Double-length regression e Maximum likelihood o Stochastic volatility
¢ Efficient two-step estimator estimators ~ ¢ Two-step estimator
¢ GARCH model * Model based test e Wald test
¢ Generalized least squares ® Moving average * Weighted least squares
¢ Generalized sum of squares  » Multiplicative ¢ White estimator
¢ GMM estimator heteroscedasticity e White’s test
¢ Goldfeld-Quandt test e Nonconstructive test
o Groupwise ¢ Residual based test
heteroscedasticity * Robust estimator
Exercises

1. Suppose that the regression model is y;=p+¢, where E[g|x]=0,
Covle;, ;| x;, x;] = 0fori # j, but Var[e; | x;] = 02x%, x; > 0.
a. Given a sample of observations on y; and x;, what is the most efficient estimator
of 1? What is its variance?
b. What is the OLS estimator of u, and what is the variance of the ordinary least
squares estimator?
c. Prove that the estimator in part a is at least as efficient as the estimator in part b.
2. For the model in the previous exercise, what is the probability limit of s> =
LS ® L (% — )? Note that s? is the least squares estimator of the residual variance.
It is also n times the conventional estimator of the variance of the OLS estimator,

2
Est. Var[y] = s>(X'X) "1 = %

How does this equation compare with the true value you found in part b of Exer-
cise 1?7 Does the conventional estimator produce the correct estimate of the true
asymptotic variance of the least squares estimator?
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3. Two samples of 50 observations each produce the following moment matrices. (In
each case, X is a constant and one variable.)

Sample 1 Sample 2

X'X [50 300} [50 300]

300 2100 |300 2100
yX [300 2000] [300 2200]
yy 2100 2800

a. Compute the least squares regression coefficients and the residual variances s2

for each data set. Compute the R? for each regression.

b. Compute the OLS estimate of the coefficient vector assuming that the coefficients
and disturbance variance are the same in the two regressions. Also compute the
estimate of the asymptotic covariance matrix of the estimate.

¢. Test the hypothesis that the variances in the two regressions are the same without
assuming that the coefficients are the same in the two regressions.

d. Compute the two-step FGLS estimator of the coefficients in the regressions,
assuming that the constant and slope are the same in both regressions. Compute
the estimate of the covariance matrix and compare it with the result of part b.

4. Using the data in Exercise 3, use the Oberhofer-Kmenta method to compute the
maximum likelihood estimate of the common coefficient Vector
5. This exercise is based on the following data set.

50 Observations on Y:

-1.42 275 2.10 —-5.08 149 1.00 0.16 -1.11 1.66
—0.26 —4.87 5.94 2.21 —6.87 0.90 1.61 2.11 -3.82
-0.62 7.01 26.14 7.39 0.79 1.93 1.97 -23.17 -2.52
-1.26 -0.15 341 -5.45 1.31 1.52 2.04 3.00 6.31
5.51 -15.22 -1.47 —1.48 6.66 1.78 2.62 -5.16 —4.71
-0.35 —-0.48 1.24 0.69 1.91
50 Observations on X;:
~1.65 1.48 0.77 0.67 0.68 0.23 —0.40 -1.13 0.15
—0.63 034 035 0.79 0.77 -1.04 0.28 0.58 -041
-1.78 1.25 0.22 1.25 -0.12 0.66 1.06 —0.66 —1.18
—0.80 -1.32 0.16 1.06 —0.60 0.79 0.86 2.04 -0.51
0.02 0.33 -199 - 0.70 -0.17 033 0.48 1.90 -0.18
-0.18 ~1.62 0.39 0.17 1.02
50 Observations on X,:
-0.67 0.70 032 2.88 -0.19 -1.28 272 -0.70 ~1.55
-0.74 -1.87 1.56 037 -2.07 1.20 0.26 -1.34 -2.10
0.61 2.32 4.38 2.16 1.51 0.30 -0.17 7.82 -1.15
1.77 2.92 -1.94 2.09 1.50 -0.46 0.19 —0.39 1.54
1.87 ~3.45 —0.88 -1.53 1.42 -2.70 1.77 —1.89 -1.85
201 1.26 -2.02 1.91 -2.23

a. Compute the ordinary least squares regression of ¥ on a constant, X7, and X;. Be
sure to compute the conventional estimator of the asymptotic covariance matrix
of the OLS estimator as well.
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b. Compute the White estimator of the appropriate asymptotic covariance matrix
for the OLS estimates.

c. Test for the presence of heteroscedasticity using White’s general test. Do your
results suggest the nature of the heteroscedasticity?

d. Use the Breusch-Pagan Lagrange multiplier test to test for heteroscedasticity.

e. Sort the data keying on Xj and use the Goldfeld~Quandt test to test for het-
eroscedasticity. Repeat the procedure, using X>. What do you find?

Using the data of Exercise 5, reestimate the parameters using a two-step FGLS

estimator. Try the estimator used in Example 11.4.

For the model in Exercise 1, suppose that ¢ is normally distributed, with mean zero

and variance o*[1 + (yx)?]. Show that ¢ and y? can be consistently estimated by

a regression of the least squares residuals on a constant and x2. Is this estimator

efficient?

Derive the log-likelihood function, first-order conditions for maximization, and

information matrix for the model y; = x/8 + &;, & ~ N[0, 02(»'z:)?].

. Suppose that y has the pdf f(y|x) = (1/8'x)e ?/#® y > 0. Then E[y|x] = #'x

and Var[y|x] = (B'x). For this model, prove that GLS and MLE are the same,
even though this distribution involves the same parameters in the conditional mean
function and the disturbance variance.

In the discussion of Harvey’s model in Section 11.7, it is noted that the initial
estimator of y;, the constant term in the regression of In eiz on a constant, and
z; is inconsistent by the amount 1.2704. Harvey points out that if the purpose of
this initial regression is only to obtain starting values for the iterations, then the
correction is not necessary. Explain why this statement would be true.

(This exercise requires appropriate computer software. The computations required
can be done with RATS, EViews, Stata, TSP, LIMDEP, and a variety of other
software using only preprogrammed procedures.) Quarterly data on the consumer
price index for 1950.1 to 2000.4 are given in Appendix Table F5.1. Use these data
to fit the model proposed by Engle and Kraft (1983). The model is

7 = Bo+ B + By + Bamia + Bamti_a + &

where m; = 100 In[p;/p;—1] and p; is the price index.

a. Fit the model by ordinary least squares, then use the tests suggested in the text
to see if ARCH effects appear to be present.

b. The authors fit an ARCH(8) model with declining weights,

8 .
9—i
O’f:ao-{— E < 36 )6}2_1-
i=1

Fit this model. If the software does not allow constraints on the coefficients, you
can still do this with a two-step least squares procedure, using the least squares
residuals from the first step. What do you find?

¢. Bollerslev (1986) recomputed this model as a GARCH(1,1). Use the
GARCH(1,1) form and refit your model.




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35

