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SIMULTANEOUS-EQUATIONS
MODELS

15.1 INTRODUCTION

15.

378

Although most of our work thus far has been in the context of single-equation models,
even a cursory look through almost any economics textbook shows that much of the
theory is built on sets, or systems, of relationships. Familiar examples include market
equilibrium, models of the macroeconomy, and sets of factor or commodity demand
equations. Whether one’s interest is only in a particular part of the system or in the
system as a whole, the interaction of the variables in the model will have important
implications for both interpretation and estimation of the model’s parameters. The
implications of simultaneity for econometric estimation were recognized long before
the apparatus discussed in this chapter was developed.! The subsequent research in
the subject, continuing to the present, is among the most extensive in econometrics.
This chapter considers the issues that arise in interpreting and estimating multiple-
equations models. Section 15.2 describes the general framework used for analyzing
systems of simultaneous equations. Most of the discussion of these models centers on
problems of estimation. But before estimation can even be considered, the fundamental
question of whether the parameters of interest in the model are even estimable must
be resolved. This problem of identification is discussed in Section 15.3. Sections 15.4
to 15.7 then discuss methods of estimation. Section 15.8 is concerned with specification
tests. In Section 15.9, the special characteristics of dynamic models are examined.

2 FUNDAMENTAL ISSUES IN
SIMULTANEOUS-EQUATIONS MODELS

In this section, we describe the basic terminology and statistical issues in the analysis of
simultaneous-equations models. We begin with some simple examples and then present
a general framework.

15.2.1 ILLUSTRATIVE SYSTEMS OF EQUATIONS

A familiar example of a system of simultaneous equations is a model of market equi-
librium, consisting of the following:

demand equation: Qa: = 1P +ox +eqy,

supply equation: gs,. = P + &5,
equilibrium condition: qg; = g5 = q;.

1See, for example, Working (1926) and Haavelmo (1943).
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These equations are structural equations in that they are derived from theory and each
purports to describe a particular aspect of the economy.? Since the model is one of
the joint determination of price and quantity, they are labeled jointly dependent or
endogenous variables. Income x is assumed to be determined outside of the model,
which makes it exogenous. The disturbances are added to the usual textbook descrip-
tion to obtain an econometric model. All three equations are needed to determine the
equilibrium price and quantity, so the system is interdependent. Finally, since an equilib-
rium solution for price and quantity in terms of income and the disturbances is, indeed,
implied (unless «; equals B;), the system is said to be a complete system of equations.
The completeness of the system requires that the number of equations equal the number of
endogenous variables. As a general rule, it is not possible to estimate all the parameters
of incomplete systems (although it may be possible to estimate some of them).

Suppose that interest centers on estimating the demand elasticity «;. For simplicity,
assume that ¢4 and g, are well behaved, classical disturbances with

E[gd,t |xt] = E[é’?s,r 'xt] =0,
E [812” |xt} =02 E [852', ]x,] =02,
Eleqress | %] = Eleax] = Elesex:] = 0.

All variables are mutually uncorrelated with observations at different time periods.
Price, quantity, and income are measured in logarithms in deviations from their sample
means. Solving the equations for p and ¢ in terms of x, and &4, and & produces the
reduced form of the model

X Ed — &

= + =mX + v,
p Bi—ar  Br—oy

(15-1)
_ Prnx | Breg —anes

B —o Br—a

(Note the role of the “completeness” requirement that «; not equal B;.)

It follows that Cov[p, 4] = oj/(,Bl —ay)and Cov[p, &] = —asz/(ﬂl —ay) so neither
the demand nor the supply equation satisfies the assumptions of the classical regression
model. The price elasticity of demand cannot be consistently estimated by least squares
regression of g on y and p. This result is characteristic of simultaneous-equations models.
Because the endogenous variables are all correlated with the disturbances, the least
squares estimators of the parameters of equations with endogenous variables on the
right-hand side are inconsistent.’

Suppose that we have a sample of T observations on p, g, and y such that

= X + V.

plim(1/ T)x'x = o2.

Since least squares is inconsistent, we might instead use an instrumental variable esti-
mator.* The only variable in the system that is not correlated with the disturbances is x.

>The distinction between structural and nonstructural models is sometimes drawn on this basis. See, for
example, Cooley and LeRoy (1985).

3This failure of least squares is sometimes labeled simultaneous-equations bias.
4See Section 5.4.
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Consider, then, the IV estimator, A1 = q'x/p’x. This estimator has

qx/T _ Broz/(B1 — a1) i
Px/ T w/Bri—a)

plim 8; = plim

Evidently, the parameter of the supply curve can be estimated by using an instrumental
variable estimator. In the least squares regression of p on x, the predicted values are
p = (p’x/x'x)x. It follows that in the instrumental variable regression the instrument is
p. That is, ~

_Pq
p'p

A1

Since p'p = p'p. B is also the slope in a regression of g on these predicted values. This
interpretation defines the two-stage least squares estimator.

It would be desirable to use a similar device to estimate the parameters of the
demand equation, but unfortunately, we have exhausted the information in the sample.
Not only does least squares fail to estimate the demand equation, but without some
further assumptions, the sample contains no other information that can be used. This
example illustrates the problem of identification alluded to in the introduction to this
chapter.

A second example is the following simple model of income determination.

Example 15.1 A Small Macroeconomic Model
Consider the model,

consumption: C; = ag + a1Y: + @2Ci—1 + €n1,

Bo + Bart + Ba(¥r — Y1) + &2,
demand: Vi =Ce+it+ Qe

investment: i

The model contains an autoregressive consumption function, an investment equation based
on interest and the growth in output, and an equilibrium condition. The model determines
the values of the three endogenous variables ¢, i, and y;. This model is a dynamic model.
In addition to the exogenous variables r; and g, it contains two predetermined variables,
c:_1 and y;_4. These are obviously not exogenous, but with regard to the current values of
the endogenous variables, they may be regarded as having already been determined. The
deciding factor is whether or not they are uncorrelated with the current disturbances, which
we might assume. The reduced form of this model is

Ac: = ao(1 — B2) + Boart + a1 Birt +a1Gr + aa(1 — Ba)Cr1 — a1 foYe—1 + (1 = Bo)en + arére,
Air = apfz + Bo(1 — 1) + B1(1 —aq)re + B2t + 02 f2Ce1 — Bl 1 — 1) Y1 + Bager + (1 — ay) era,
Ayr = ap + fo + Pilt + Gt + @2Cr1 — BoYi1 +&n + r,

where A =1 — a4 — B,. Note that the reduced form preserves the equilibrium condition.

The preceding two examples illustrate systems in which there are behavioral equa-
tions and equilibrium conditions. The latter are distinct in that even in an econometric
model, they have no disturbances. Another model, which illustrates nearly all the con-
cepts to be discussed in this chapter, is shown in the next example.
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Example 15.2 Klein’s Model |
A widely used example of a simultaneous equations model of the economy is Klein’s (1950)
Model I. The model may be written .

Ct=ap+ o1 P+ aoProg + a3 (W + WP) + 1t (consumption),

It = Bo+ B1P + PPy + BsKisy  4ex (investment),

WP = yo + 11 Xt + 12 Xet + vaAr + &3 (private wages),
Xi=Ci+1:+G; : {equilibrium demand),
Po=X— T — W (private profits),
Ki=Kiaa+1; (capital stock).

The endogenous variables are each on the left-hand side of an equation and are labeled
on the right. The exogenous variables are G; = government nonwage spending, T; = indirect
business taxes plus net exports, W = government wage bill, A; =time trend measured as
years from 1931, and the constant term. There are also three predetermined variables:
the lagged values of the capital stock, private profits, and total demand. The model con-
tains three behavioral equations, an equilibrium condition and two accounting identities.
This model provides an excellent example of a small, dynamic model of the economy. it
has also been widely used as a test ground for simultaneous-equations estimators. Klein
estimated the parameters using data for 1921 to 1941. The data are listed in Appendix
Table F15.1.

15.2.2 ENDOGENEITY AND CAUSALITY

The distinction between “exogenous” and “endogenous” variables in a model is a subtle
and sometimes controversial complication. It is the subject of a long literature.” We
have drawn the distinction in a useful economic fashion at a few points in terms of
whether a variable in the model could reasonably be expected to vary “autonomously,”
independently of the other variables in the model. Thus, in a model of supply and
demand, the weather variable in a supply equation seems obviously to be exogenous in
a pure sense to the determination of price and quantity, whereas the current price clearly
is “endogenous” by any reasonable construction. Unfortunately, this neat classification
is of fairly limited use in macroeconomics, where almost no variable can be said to be
truly exogenous in the fashion that most observers would understand the term. To take
a common example, the estimation of consumption functions by ordinary least squares,
as we did in some earlier examples, is usually treated as a respectable enterprise, even
though most macroeconomic models (including the examples given here) depart from
a consumption function in which income is exogenous. This departure has led analysts,
for better or worse, to draw the distinction largely on statistical grounds.

The methodological development in the literature has produced some consensus
on this subject. As we shall see, the definitions formalize the economic characterization
we drew earlier. We will loosely sketch a few results here for purposes of our derivations
to follow. The interested reader is referred to the literature (and forewarned of some
challenging reading).

3See, for example, Zellner (1979), Sims (1977), Granger (1969), and especially Engle, Hendry, and Richard
(1983). ) ’



382 CHAPTER 15 4+ Simultaneocus-Equations Models

Engle, Hendry, and Richard (1983) define a set of variables x, in a parameter-
ized model to be weakly exogenous if the full model can be written in terms of a
marginal probability distribution for x, and a conditional distribution for y, | x, such that
estimation of the parameters of the conditional distribution is no less efficient than esti-
mation of the full set of parameters of the joint distribution. This case will be true if none
of the parameters in the conditional distribution appears in the marginal distribution
for x,. In the present context, we will need this sort of construction to derive reduced
forms the way we did previously.

With reference to time-series applications (although the notion extends to cross sec-
tions as well), variables x; are said to be predetermined in the model if x; is independent
of all subsequent structural disturbances ¢, for s > 0. Variables that are predetermined
in a model can be treated, at least asymptotically, as if they were exogenous in the sense
that consistent estimates can be obtained when they appear as regressors. We used
this result in Chapters 5 and 12 as well, when we derived the properties of regressions
containing lagged values of the dependent variable.

A related concept is Granger causality. Granger causality (a kind of statistical feed-
back) is absent when f(x; |X;-1,¥:—1) equals f(x;[x,_1). The definition states that in
the conditional distribution, lagged values of y, add no information to explanation of
movements of x; beyond that provided by lagged values of x; itself. This concept is
useful in the construction of forecasting models. Finally, if x, is weakly exogenous and
if y,_1 does not Granger cause Xx,, then x; is strongly exogenous.

15.2.3 A GENERAL NOTATION FOR LINEAR SIMULTANEOUS
EQUATIONS MODELS®

The structural form of the model is’

vy + yaye + -+ ymyim + Buxn + -+ BraXek = €41,

vieyn + yonyn + -+ ymeyim + Buxa + -+ Brexek = €0, y
(15-2)

Vimyn + VamYe + o+ yumYem + Bimxe + -+ BrkmXex = &

There are M equations and M endogenous variables, denoted y, ..., yu. There are K
exogenous variables, x1, ..., xg, that may include predetermined values of y1, ..., ymu
as well. The first element of x, will usually be the constant, 1. Finally, &1, .. ., & are the
structural disturbances. The subscript 7 will be used to index observations,t =1, ..., T.

6We will be restricting our attention to linear models in this chapter. Nonlinear systems occupy another strand
of literature in this area. Nonlinear systems bring forth numerous complications beyond those discussed here
and are beyond the scope of this text. Gallant (1987), Gailant and Holly (1980), Gallant and White (1988).
Davidson and MacKinnon (1993), and Wooldridge (2002) provide further discussion.

7For the present, it is convenient to ignore the special nature of lagged endogenous variables and treat them
the same as the strictly exogenous variables.
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In matrix terms, the system may be written

Yit Yz o ViMm
Y21 Y2 o VoM
by - yule
YML ¥YM2 - VMM
pu P - B
Ba P - Bom
+[x1 x oo xkl : =le1 &2 - em]
Bxi Bx2 -+ Bkm
or
y/T +x/B=e¢].

Each column of the parameter matrices is the vector of coefficients in a particular
equation, whereas each row applies to a specific variable.

The underlying theory will imply a number of restrictions on I' and B. One of the
variables in each equation is labeled the dependent variable so that its coefficient in the
model will be 1. Thus, there will be at least one “1” in each column of I'. This normaliza-
tion is not a substantive restriction. The relationship defined for a given equation will
be unchanged if every coefficient in the equation is multiplied by the same constant.
Choosing a “dependent variable” simply removes this indeterminacy. If there are any
identities, then the corresponding columns of T and B will be completely known, and
there will be no disturbance for that equation. Since not all variables appear in all equa-
tions, some of the parameters will be zero. The theory may also impose other types of
restrictions on the parameter matrices.

If T is an upper triangular matrix, then the system is said to be tnangular. In this
case, the model is of the form

¥ = fiX) + &,

Yo = Ly, xe) + &2,

yim = (V1 Yo, - o Yeom—1, %) + &

The joint determination of the variables in this model is recursive. The first is com-
pletely determined by the exogenous factors. Then, given the first, the second is likewise
determined, and so on.
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The solution of the system of equations determining y, in terms of x, and &, is the
reduced form of the model,

Ty M2 o MM
M1 T2 - T2M

’

=[x x - x| . +{v - vul
Tkl k2 - TKM

= xBr!4er!
=x I+ v

For this solution to exist, the model must satisfy the completeness condition for simul-
taneous equations systems: I must be nonsingular.

Example 15.3 Structure and Reduced Form
For the small model in Example 15.1,y' =[c,/, y],x' =[1,r,9,C_1, y-4], and

—ag —fo O
1 0o -1 0 -5 0 1-8 B2 1
r=120 1 -1, B=| 0 0o -1y, F‘1=% o4 1—a; 1],
-y B 1 —ap O 0 o Bo 1
0 B 0
ao(1 — B2 + Poors) a1 B oy a(1—pB) —pactq
om= % cofe + Bo(1 — 1) B1(1—a1) Be a2 B2 —B2(1 —a4)
ag + fo B 1 ap —B2

where A =1 — a1 — Bo. The completeness condition is that «y and 8, do not sum to one.

The structural disturbances are assumed to be randomly drawn from an M-variate

distribution with
Ele/|x]=0 and E[ew]|x]=2X.
For the present, we assume that
Elel |x;, %] =0, V1,5

Later, we will drop this assumption to allow for heteroscedasticity and autocorrelation.
It will occasionally be useful to assume that &, has a multivariate normal distribution,
but we shall postpone this assumption until it becomes necessary. It may be convenient
to retain the identities without disturbances as separate equations. If so, then one way

to proceed with the stochastic specification is to place rows and columns of zeros in the
appropriate places in X. It follows that the reduced-form disturbances, v/ = &/T ™! have

E[v.|x;] =@ 10 =0,
E[vvV|x]=TYIr'l=a.

This implies that
Y =Tr'Qr.
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The preceding formulation describes the model as it applies to an observation [y’, X', &'];
at a particular point in time or in a cross section. In a sample of data, each joint obser-
vation will be one row in a data matrix,

i X&)
I
Yr Xr €7
In terms of the full set of T observations, the structure is

YT+ XB=E,
with
E[E|X]=0 and E[(1/TFEE|X]=X.
Under general conditions, we can strengthen this structure to
plim[(1/ T)E’'E] = X.

An important assumption, comparable with the one made in Chapter 5 for the classical
regression model, is

plim(1/T)X'X = Q, afinite positive definite matrix. (15-3)
We also assume that
plim(1/ T)X'E = 0. 1s-4)

This assumption is what distinguishes the predetermined variables from the endogenous
variables. The reduced form is '

. Y=XIN+V, whereV=EI"

Combining the earlier results, we have

Y’ QI+ II'Q €
1
plim — |X'|[Y X V]=| Qn Q 0. (15-5)
\% Q 0 «

15.3 THE PROBLEM OF IDENTIFICATION

Solving the problem to be considered here, the identification problem, logically precedes
estimation. We ask at this point whether there is any way to obtain estimates of the
parameters of the model. We have in hand a certain amount of information upon which
to base any inference about its underlying structure. If more than one theory is consistent
with the same “data,” then the theories are said to be observationally equivalent and
there is no way of distinguishing them. The structure is said to be unidentified.®

8 A useful survey of this issue is Hsiao (1983).
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Example 15.4 Observational Equivalence®

The observed data consist of the market outcomes shown in Figure 15.1a. We have no
knowledge of the conditions of supply and demand beyond our belief that the data represent
equilibria. Unfortunately, parts (b) and (c) of Figure 15.1 both show structures —that is, true
underlying supply and demand curves—which are consistent with the data in Figure 15.1a.
With only the data in Figure 15.1a, we have no way of determining which of theories 15.1b or
¢ is the right one. Thus, the structure underlying the data in Figure 15.1a is unidentified. To
suggest where our discussion is headed, suppose that we add to the preceding the known
fact that the conditions of supply were unchanged during the period over which the data
were drawn. This rules out 15.1¢ and identifies 15.1b as the correct structure. Note how this
scenario relates to Example 15.1 and to the discussion following that example.

The identification problem is not one of sampling properties or the size of the
sample. To focus ideas, it is even useful to suppose that we have at hand an infinite-
sized sample of observations on the variables in the model. Now, with this sample and
our prior theory, what information do we have? In the reduced form,

y, =x I +v, E[v,v|x] =,

the predetermined variables are uncorrelated with the disturbances. Thus, we can
“observe” : ‘

plim(1/ THX'X = Q [assumed; see (15-3)],
plim(1/ T)X'Y = plim(1/ T)X'(XII + V) = QII,
plim(1/T)Y'Y = plim(1/ T)(I'X’ + V)(XII1 + V) = II'QII + L.

Therefore, I, the matrix of reduced-form coefficients, is observable:

o (2] (3]

9This example paraphrases the classic argument of Working (1926).
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This estimator is simply the equation-by-equation least squares regression of Y on X.
Since II is observable, £ is also: : '

0 —oim YY i [YX][XX] 7 XY
LA S e A | T |

This result should be recognized as the matrix of least squares residual variances and
covariances. Therefore, ‘

I and R can be estimated consistently by least squares regression of Y on X.

The information in hand, therefore, consists of I1, £, and whatever other nonsample in-
formation we have about the structure.'” Now, can we deduce the structural parameters
from the reduced form?

The correspondence between the structural and reduced-form parameters is the
relationships

N=-Br'!' and @=E[w]=@Yzr1

If T were known, then we could deduce B as —IIT and ¥ as I"'QT. It would appear,
therefore, that our problem boils down to obtaining I', which makes sense. If I' were
known, then we could rewrite (15-2), collecting the endogenous variables times their
respective coefficients on the left-hand side of a regression, and estimate the remaining
unknown coefficients on the predetermined variables by ordinary least squares.'!

The identification question we will pursue can be posed as follows: We can “observe”
the reduced form. We must deduce the structure from what we know about the reduced
form. If there is more than one structure that can lead to the same reduced form,
then we cannot say that we can “estimate the structure.” Which structure would that
be? Suppose that the “true” structure is [T, B, }. Now consider a different structure,
yT+x'B = &, thatis obtained by postmultiplying the first structure by some nonsingular
matrix F. Thus, T = T'F, B=BF, & = ¢'F. The reduced form that corresponds to this new
structure is, unfortunately, the same as the one that corresponds to the old one;

fl=-Br!=-BFF'r!'=1m,

and, in the same fashion, £ = €. The false structure looks just like the true one, at least
in terms of the information we have. Statistically, there is no way we can tell them apart.
The structures are observationally equivalent.

Since F was chosen arbitrarily, we conclude that any nonsingular transformation
of the original structure has the same reduced form. Any reason for optimism that
we might have had should be abandoned. As the model stands, there is no means by
which the structural parameters can be deduced from the reduced form. The practical
implication is that if the only information that we have is the reduced-form parameters,
then the structural model is not estimable. So how were we able to identify the models

10We have not necessarily shown that this is al/ the information in the sample. In general, we observe the
conditional distribution f(y; |x;), which constitutes the likelihood for the reduced form. With normally
distributed disturbances, this distribution is a function of IT, €. (See Section 15.6.2.) With other distributions,
other or higher moments of the variables might provide additional information. See, for example, Goldberger
(1964, p. 311), Hausman (1983, pp. 402-403), and especially Riersgl (1950).

UThis method is precisely the approach of the LIML estimator. See Section 15.5.5.
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in the earlier examples? The answer is by bringing to bear our nonsample information,
namely our theoretical restrictions. Consider the following examples:

Example 15.5 Identification
Consider a market in which g is quantity of Q, p is price, and z is the price of Z, a related
good. We assume that z enters both the supply and demand equations. For example, Z
might be a crop that is purchased by consumers and that will be grown by farmers instead
of Q if its price rises enough relative to p. Thus, we would expect «, > 0 and 8, < 0. So,

Qe =ap+a1p+axz+¢eqg (demand),
s = Po+ B1p+ B2+ (Supply),

Q=GG=9 . (equilibrium).
The reduced form is
a1y — 1B — Q1€s — Q€
_ 1B — P 182 — azpB4 165 Z 280 _ 4z v,
a1 — B o1 — B4 a1 — B
_Bo—ax | B & — &d

= = T2 + T22Z + Vp.
=P =P o — B

With only four reduced-form coefficients and six structural parameters, it is obvious that there
will not be a complete solution for all six structural parameters in terms of the four reduced
parameters. Suppose, though, that it is known that 8, = 0 (farmers do not substitute the
alternative crop for this one). Then the solution for ¢ is 721 /720. After a bit of manipulation,
we also obtain 8y = 711 — m27e1 /722 The restriction identifies the supply parameters. But
this step is as far as we can go.

Now, suppose that income x, rather than z, appears in the demand equation. The revised
model is

g=wy+ a1 p+asX+eq,
q=Po+ PP+ Poz+e2.
The structure is now
—og —fo

:|+[1 X Z] —d 0 =[81 82].

1 1
[ pl {_a _
! 0 -8

B1

The reduced form is

(o180 — 0B} /A (Bo — @0)/A
g Pl=01 x 2 —azf1/A —a/A | 4+ v,
a1B2/A Bo/A

where A = (a1 — B1). Every false structure has the same reduced form. But in the coefficient
matrix,

) o f11+ Bofiz oo fio + Bofor
B=BF = (¢4} f11 24/} f12
Ba fa1 B2 fa

if fi2 is not zero, then the imposter will have income appearing in the supply equation,
which our theory has ruled out. Likewise, if f»1 is not zero, then z will appear in the demand
equation, which is also ruled out by our theory. Thus, although all false structures have the
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same reduced form as the true one, the only one that is consistent with our theory (i.e.,
is admissible) and has coefficients of 1 on g in both equations (examine T'F) is F=1. This
transformation just produces the original structure.

The unique solutions for the structural parameters in terms of the reduced-form parame-

ters are
31 TT2q
o =111 — T2\ — |, Po=m11 —mw2| — |,
32 TT22

31 TT21
a1 = ﬂ‘] =
32 22

The preceding discussion has considered two equivalent methods of establishing
identifiability. If it is possible to deduce the structural parameters from the known
reduced form parameters, then the model is identified. Alternatively, if it can be shown
that no false structure is admissible —that is, satisfies the theoretical restrictions —then
the model is identified.!?

15.3.1 THE RANK AND ORDER CONDITIONS FOR IDENTIFICATION

It is useful to summarize what we have determined thus far. The unknown structural
parameters consist of

I' = an M x M nonsingular matrix,

B = a K x M parameter matrix,

X = an M x M symmetric positive definite matrix.
The known, reduced-form parameters are

II = a K x M reduced-form coefficients matrix,

€ = an M x M reduced-form covariance matrix.
Simply counting parameters in the structure and reduced forms yields an excess of
l=M +KM+3MM+1)— KM—1MM+1) = M?,

which is, as might be expected from the earlier results, the number of unknown elements
in I'. Without further information, identification is clearly impossible. The additional
information comes in several forms.

1. Normalizations. In each equation, one variable has a coefficient of 1. This normal-
ization is a necessary scaling of the equation that is logically equivalent to putting one
variable on the left-hand side of a regression. For purposes of identification (and some
estimation methods), the choice among the endogenous variables is arbitrary. But at
the time the model is formulated, each equation will usually have some natural depen-
dent variable. The normalization does not identify the dependent variable in any formal
or causal sense. For example, in a model of supply and demand, both the “demand”

2For other interpretations, see Amemiya (1985, p. 230) and Gabrielsen (1978). Some deeper theoretical
results on identification of parameters in econometric models are given by Bekker and Wansbeek (2001).
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equation, Q = f(P,x), and the “inverse demand” equation, P = g((Q, x), are appro-
priate specifications of the relationship between price and quantity. We note, though,
the following:

With the normalizations, there are M(M — 1), not M?, undetermined valuesin T
and this many indeterminacies in the model to be resolved through nonsample
information.

2. Identities. In some models, variable definitions or equilibrium conditions imply that
all the coefficients in a particular equation are known. In the preceding market example,
there are three equations, but the third is the equilibrium condition Q; = Q. Klein’s
Model 1 (Example 15.3) contains six equations, including two accounting identities
and the equilibrium condition. There is no question of identification with respect to
identities. They may be carried as additional equations in the model, as we do with
Klein’s Model 1 in several later examples, or built into the model a priori, as is typical
in models of supply and demand.

The substantive nonsample information that will be used in identifying the model
will consist of the following:
3. Exclusions. The omission of variables from an equation places zerosin Band I'. In
Example 15.5, the exclusion of income from the supply equation served to identify its
parameters.
4. Linear restrictions. Restrictions on the structural parameters may also serve to
rule out false structures. For example, a long-standing problem in the estimation of
production models using time-series data is the inability to disentangle the effects of
economies of scale from those of technological change. In some treatments, the solution
is to assume that there are constant returns to scale, thereby identifying the effects due
to technological change.
5. Restrictions on the disturbance covariance matrix. In the identification of a model,
these are similar to restrictions on the slope parameters. For example, if the previ-
ous market model were to apply to a microeconomic setting, then it would probably
be reasonable to assume that the structural disturbances in these supply and demand
equations are uncorrelated. Section 15.3.3 shows a case in which a covariance restriction
identifies an otherwise unidentified model.

To formalize the identification criteria, we require a notation for a single equation.
The coefficients of the jth equation are contained in the jth columns of I' and B. The jth
equation is

y’I'j + X,B]' = €&;. (15-6)

(For convenience, we have dropped the observation subscript.) In this equation, we
know that (1) one of the elements in T; is one and (2) some variables that appear
elsewhere in the model are excluded from this equation. Table 15.1 defines the notation
used to incorporate these restrictions in (15-6).

Equation j may be written

i =Yy + Y7V + X8, +x7 B} +e;.
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Endogenous Variables Exogenous Variables

Included Y; = M; variables x; = K variables
Excluded Y} = M; variables xj = Kj variables

The number of equationsis M; + M} +1= M

The number of exogenous variables is K; + K;=K.
The coefficient on y; in equation j is 1.

*s will always be associated with excluded variables.

The exclusions imply that yj =0and g7 = 0. Thus,
=[1 -y} O] and B, =[-g, 0]

(Note the sign convention.) For this equation, we partition the reduced-form coefficient
matrix in the same fashion:

(1) (M) (M)

o, 1, [K; rows]
[v; Y Yl=1[x; xjl 1§ l’[j} v Vi Vil [K; rows]. 1>
The reduced-form coefficient matrix is
= -Br,
which implies that
‘ r = -B.
The jth column of this matrix equation applies to the jth equation,
| I, = —B,.
Inserting the parts from Table 15.1 yields
m; W; 1 1}, _ {ﬂ/}
o WM T e
Now extract the two subequations,
mwj—H;y; =B; (K;equations), (15-8)
n] — H’;y =0 (K}“ equations), (15-9)

@ (M)).

The solution for B in terms of T that we observed at the beginning of this discussion is
in (15-8). Equation (15-9) may be written

My, =x’. (15-10)

This system is K7 equations in M; unknowns. If they can be solved for ¥, then (15-
8) gives the solution for g; and the equation is identified. For there to be a solution,
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there must be at least as many equations as unknowns, which leads to the following
condition.

DEFINITION 15.1 Order Condition for Identification of Equation j
Ki > M;. (15-11)

The number of exogenous variables excluded from equation j must be at least as
large as the number of endogenous variables included in equation j.

——

The order condition is only a counting rule. It is a necessary but not sufficient
condition for identification. It ensures that (15-10) has at least one solution, but it does
not ensure that it has only one solution. The sufficient condition for uniqueness follows.

DEFINITION 15.2 Rank Condition for Identification
rank[x}, IT}] = rank[IT}] = M;.

This condition imposes a restriction on a submatrix of the reduced-form coefficient
matrix.

e

The rank condition ensures that there is exactly one solution for the structural
parameters given the reduced-form parameters. Our alternative approach to the iden-
tification problem was to use the prior restrictions on [T, B] to eliminate all false struc-
tures. An equivalent condition based on this approach is simpler to apply and has more
intuitive appeal. We first rearrange the structural coefficients in the matrix

F 1AL
-V A

A= [H =0 As|=[ A (15-12)
-B; A4
L 0 As]

The jth column in a false structure [T'F. BF] (i.e., the imposter for our equation j) would
be [I'f;. Bf;], where f; is the jth column of F. This new jth equation is to be built up
as a linear combination of the old one and the other equations in the model. Thus,
partitioning as previously,

F 1AL o0
—v; A I Vi

e |72 ][
—B; A4 B
L 0 As] [ 0]
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If this hybrid is to have the same variables as the original, then it must have nonzero
elements in the same places, which can be ensured by taking fY=1, and zeros in the
same positions as the original a;. Extracting the third and fifth blocks of rows, if &; is to
be admissible, then it must meet the requirement

This equality is not possible if the (M} + K7) x (M — 1) matrix in brackets has full column
rank, so we have the equivalent rank condition,

A;

k =M-1
ran [A}

5
The corresponding order condition is that the matrix in brackets must have at least
as many rows as columns. Thus, M}k + K;-‘ > M — 1. But since M=M; + M}‘ 41, this
condition is the same as the order condition in (15-11). The equivalence of the two rank
conditions is pursued in the exercises.

The preceding provides a simple method for checking the rank and order conditions.
We need only arrange the structural parameters in a tableau and examine the relevant
submatrices one at a time; A3 and A5 are the structural coefficients in the other equations
on the variables that are excluded from equation j.

One rule of thumb is sometimes useful in checking the rank and order conditions
of a model: If every equation has its own predetermined variable, the entire model is
identified. The proof is simple and is left as an exercise. For a final example, we consider
a somewhat larger model.

Example 15.6 Identification of Klein’s Model |
The structural coefficients in the six equations of Klein's Model |, transposed and multiplied
by —1 for convenience, are listed in Table 15.2. Identification of the consumption function
requires that the matrix [A;, A;] have rank 5. The columns of this matrix are contained in boxes
in the table. None of the columns indicated by arrows can be formed as linear combinations
of the other columns, so the rank condition is satisfied. Verification of the rank and order
conditions for the other two equations is left as an exercise.

It is unusual for a model to pass the order but not the rank condition. Generally,
either the conditions are obvious or the model is so large and has so many predetermined

TABLE 15.2  Klein's Model |, Structural Coefficient

r’ B
C 1 wr X P K 1 w G T A P, K, X,
C -1 0 o3 0 o 0 (¢4} o3 0 0 0 [+ 53 0 0
I 0 -1 0 0 B 0 Bo O 0 0 0 B | Bs 0
we 0 |o|l =1 [p| 0 |0 w 0 |0 0| |ml o [ol |n
X 1 1 0 -1 0 0 0 0 1 0 0 0 0 0
P 0 0 -1 1 -1 0 0 0 0 -1 0 0 0 0
K 0 1 0 0 0 |-1 0 0 0 0 0 0 1 0
1 1 t 1 1
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variables that the conditions are met trivially. In practice, it is simple to check both
conditions for a small model. For a large model, frequently only the order condition is
verified. We distinguish three cases:

1. Underidentified. K; < M; or rank condition fails.
2. Exactly identified. K; = M; and rank condition is met.
3. Overidentified. K; > M; and rank condition is met.

15.3.2 IDENTIFICATION THROUGH OTHER NONSAMPLE
INFORMATION

The rank and order conditions given in the preceding section apply to identification of
an equation through exclusion restrictions. Intuition might suggest that other types of
nonsample information should be equally useful in securing identification. To take a
specific example, suppose that in Example 15.5, it is known that §; equals 2, not 0. The
second equation could then be written as

q —2z=q; = o+ pip+ Bz + e

But we know that ¥ =0, so the supply equation is identified by this restriction. As
this example suggests, a linear restriction on the parameters within an equation is,
for identification purposes, essentially the same as an exclusion.'? By an appropriate
manipulation—that is, by “solving out” the restriction—we can turn the restriction into
one more exclusion. The order condition that emerges is

I’l]'ZM——l,

where 1 is the total number of restrictions. Since M — 1= M;+ M; and n; is the number
of exclusions plus r;, the number of additional restrictions, this condition is equivalent
to

) * * . *

ri+ K+ M = M+ M;

or
rj + K;k > Mj.
This result is the same as (15-11) save for the addition of the number of restrictions,
which is the result suggested previously.
15.3.3 IDENTIFICATION THROUGH COVARIANCE
RESTRICTIONS —THE FULLY RECURSIVE MODEL

The observant reader will have noticed that no mention of X is made in the preceding
discussion. To this point, all the information provided by £ is used in the estimation of
¥ for given T, the relationship between € and X is one-to-one. Recall that £ = T'QT.
But if restrictions are placed on X, then there is more information in £ than is needed for
estimation of X. The excess information can be used instead to help infer the elements

13The analysis is more complicated if the restrictions are across equations, that is, involve the parameters in
more than one equation. Kelly (1975) contains a number of results and examples.
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in T. A useful case is that of zero covariances across the disturbances.* Once again, it
is most convenient to consider this case in terms of a false structure. If the structure is
[T, B, X], then a false structure would have parameters

[I',B, £] = [TF. BF, FXF].

If any of the elements in ¥ are zero, then the false structure must preserve those
restrictions to be admissible. For example, suppose that we specify that o, = 0. Then it
must also be true that 1, = f{ Zf, = 0, where f; and £, are columns of F. As such, there
is a restriction on F that may identify the model.

The fully recursive model is an important special case of the preceding result. A
triangular system is

yi=PBix+eq,
¥y = vy + Bx + &,

ym=vimyt +vamya + -+ yuo1mym—1 + Byx +en.

We place no restrictions on B. The first equation is identified, since it is already in
reduced form. But for any of the others, linear combinations of it and the ones above it
involve the same variables. Thus, we conclude that without some identifying restrictions,
only the parameters of the first equation in a triangular system are identified. But suppose
that ¥ is diagonal. Then the entire model is identified, as we now prove. As usual, we
attempt to find a false structure that satisfies the restrictions of the model.

The jth column of F, f;, is the coefficients in a linear combination of the equations
that will be an imposter for equation j. Many f;’s are already precluded.

1. f; must be the first column of an identity matrix. The first equation is identified
and normalized on y;.

2. In all remaining columns of F, all elements below the diagonal must be zero, since
an equation can only involve the ys in it or in the equations above it.

Without further restrictions, any upper triangular F is an admissible transformation.
But with a diagonal X, we have more information. Consider the second column. Since
2 must be diagonal, ] Zf, = 0. But given f; in 1 above,

X, =0y fi =0,

s0 fi2 = 0. The second column of F is now complete and is equal to the second column
of I. Continuing in the same manner, we find that ‘

f{2f; =0 and £{Xf;=0

will suffice to establish that f3 is the third column of I In this fashion, it can be shown
that the only admissible F is F = I, which was to be shown. With T upper triangular,
M(M —1)/2 unknown parameters remained. That is exactly the number of restrictions
placed on X when it was assumed to be diagonal.

14More general cases are discussed in Hausman (1983) and Judge et al. (1985).
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154 METHODS OF ESTIMATION

It is possible to estimate the reduced-form parameters, I and R, consistently by
ordinary least squares. But except for forecasting y given x, these are generally not
the parameters of interest; I'. B, and X are. The ordinary least squares (OLS) esti-
mators of the structural parameters are inconsistent, ostensibly because the included
endogenous variables in each equation are correlated with the disturbances. Still, it
is at least of passing interest to examine what is estimated by ordinary least squares,
particularly in view of its widespread use (despite its inconsistency). Since the proof of
identification was based on solving for T', B, and X from IT and ®, one way to proceed
is to apply our finding to the sample estimates, P and W. This indirect least squares
approach is feasible but inefficient. Worse, there will usually be more than one possible
estimator and no obvious means of choosing among them. There are two approaches
for direct estimation, both based on the principle of instrumental variables. It is possi-
ble to estimate each equation separately using a limited information estimator. But the
same principle that suggests that joint estimation brings efficiency gains in the seemingly
unrelated regressions setting of the previous chapter is at work here, so we shall also
consider full information or system methods of estimation.

15.5 SINGLE EQUATION: LIMITED INFORMATION
ESTIMATION METHODS

Estimation of the system one equation at a time has the benefit of computational sim-
plicity. But because these methods neglect information contained in the other equations,
they are labeled limited information methods.
15.5.1 ORDINARY LEAST SQUARES
For all T observations, the nonzero terms in the jth equation are
Yi=Yivj+XiB;+ej

= Zj(s]' +éj.
The M reduced-form equations are Y = XII + V. For the included endogenous vari-
ables Y, the reduced forms are the M; appropriate columns of IT and V, written

Y; =XII; +V;. (15-13)

[Note that II; is the middle part of IT shown in (15-7).] Likewise, V; is M; columns of
V = EI'~L. This least squares estimator is

YY;, YX;]'[Ye,
4 =[22,)" Ly =8+ | ) ) ]} l / /}-

X,/Y] X;X] X’]€]

None of the terms in the inverse matrix converge to 0. Although plim(1/ IX'e; =0,
plim(1/ T)Y',e; is nonzero, which means that both parts of d; are inconsistent. (This
is the “simultaneous equations bias” of least squares.) Although we can say with cer-
tainty that d; is inconsistent, we cannot state how serious this problem is. OLS does
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have the virtue of computational simplicity, although with modern software, this virtue
is extremely modest. For better or worse, OLS is a very commonly used estimator in
this context. We will return to this issue later in a comparison of several estimators.

An intuitively appealing form of simultaneous equations model is the triangular
system that we examined in Section 15.5.3,

o) = X,ﬂ1 + &1,
2y yo =X'By + y2m + &2,
3) ys =xX'B3+yisyi + vy + &3,

and so on. If T is triangular and X is diagonal, so that the disturbances are uncorrelated,
then the system is a fully recursive model. (No restrictions are placed on B.) It is easy
to see that in this case, the entire system may be estimated consistently (and, as we
shall show later, efficiently) by ordinary least squares. The first equation is a classical
regression model. In the second equation, Cov(yy, &) = Cov(X'8, + &1, &) = 0, so it
too may be estimated by ordinary least squares. Proceeding in the same fashion to (3), it
is clear that y; and &3 are uncorrelated. Likewise, if we substitute (1) in (2) and then the
result for y; in (3), then we find that y; is also uncorrelated with ¢3. Continuing in this
way, we find that in every equation the full set of right-hand variables is uncorrelated
with the respective disturbance. The result is that the fully recursive model may be
consistently estimated using equation-by-equation ordinary least squares. (In the more
general case, in which X is not diagonal, the preceding argument does not apply.)

15.56.2 ESTIMATION BY INSTRUMENTAL VARIABLES

In the next several sections, we will discuss various methods of consistent and efficient
estimation. As will be evident quite soon, there is a surprisingly long menu of choices. It
is a useful result that all of the methods in general use can be placed under the umbrella
of instrumental variable (IV) estimators.

Returning to the structural form, we first consider direct estimation of the jth
equation,

Yi=Yy;+X;Bj+e;

(15-14)
= Z]'Sj +e;.

As we saw previously, the OLS estimator of § j is inconsistent because of the correlation
of Z; and ¢;. A general method of obtaining consistent estimates is the method of
instrumental variables. (See Section 5.4.) Let W; be a T x (M; + K;) matrix that satisfies
the requirements for an I'V estimator,

plim(1/ T)W’,Z j = Xy, = afinite nonsingular matrix, (15-15a)
plim(1/ T)W']-e i=0, (15-15b)
plim(1/ T)W’]-W j = Xy = a positive definite matrix. (15-15¢)
Then the IV estimator,

Sj,IV = [W’]-Zj]'lw’jy,-,
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will be consistent and have asymptotic covariance matrix

A

o . [1 171, 1., 17"
Asy. Var[d; v] = %phm [?WJ.Z]] [?ijj] [TZjo]
- "_%' [:!%,,25]. (15-16)

A consistent estimator of o;; is

¥ —Z;8,)'(y; —Z;8,1v)
T v

which is the familiar sum of squares of the estimated disturbances. A degrees of freedom
correction for the denominator, 7' — M; — K, is sometimes suggested. Asymptotically,
the correction is immaterial. Whether it is beneficial in a small sample remains to be
settled. The resulting estimator is not unbiased in any event, as it would be in the
classical regression model. In the interest of simplicity (only), we shall omit the degrees
of freedom correction in what follows. Current practice in most applications is to make
the correction.

The various estimators that have been developed for simultaneous-equations mod-
els are all IV estimators. They differ in the choice of instruments and in whether the
equations are estimated one at a time or jointly. We divide them into two classes, limited
information or full information, on this basis.

15-17)

Gjj =

15.5.3 TWO-STAGE LEAST SQUARES

The method of two-stage least squares is the most common method used for estimating
simultaneous-equations models. We developed the full set of results for this estimator
in Section 5.4. By merely changing notation slightly, the results of Section 5.4 are exactly
the derivation of the estimator we will describe here. Thus, you might want to review
this section before continuing.

The two-stage least squares (2SLS) method consists of using as the instruments for
Y, the predicted values in a regression of Y; on all the xs in the system:

Y, = X[(X'X)"IX'Y,] = XP;. (15-18)

It can be shown that absent heteroscedasticity or autocorrelation, this produces the
most efficient IV estimator that can be formed using only the columns of X. Note the
emulation of E[Y] = XII; in the result. The 2SLS estimator is, thus,

N oy —1
Y, VX

XY, XX;

Yy,
Ly
Before proceeding, it is important to emphasize the role of the identification con-
dition in this result. In the matrix [Y;, X;], which has M; + K j columns, all columns
are linear functions of the K columns of X. There exist, at most, K linearly indepen-
dent combinations of the columns of X. If the equation is not identified, then M; + K;
is greater than K, and [Y ;- X;] will not have full column rank. In this case, the 2SLS
estimator cannot be computed. If, however, the order condition but not the rank con-
dition is met, then although the 2SLS estimator can be computed, it is not a consistent
estimator. There are a few useful simplifications. First, since X(X’X) !X’ = (I — M) is

A

0j2sLs = (15-19)
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idempotent, \A{"jY = SA{’]Y j- Second, X/ X(X'X)~'X' = X’; implies that X};Y; = X’]Y i
Thus, (15-19) can also be written ‘

(15-20)

NN N =1 pn
) YY; Y’/.X,-] [Y'jy,]
djosLs = .

The 2SLS estimator is obtained by ordinary least squares regression of y; on Y; and
X;. Thus, the name stems from the two regressions in the procedure:

1. Stage I. Obtain the least squares predictions from regression of Y; on X.
2. Stage 2. Estimate §; by least squares regression of y; on Y; and X;.

A direct proof of the consistency of the 2SLS estimator requires only that we
establish that it is a valid I'V estimator. For (15-15a), we require

Y'Y,/ T YX;/T P'X'(XII; +V))/T PXX;/T

] =plim| _ ,
X]»(XIIj+Vj)/T XjX]'/T

plim|_~ X
XY,/ T XX;/T

to be a finite nonsingular matrix. We have used (15-13) for Y, which is a continuous
function of P, which has plim P; = I ;. The Slutsky theorem thus allows us to substitute
I; for P; in the probability limit. That the parts converge to a finite matrix follows from
(15-3) and (15-5). It will be nonsingular if I1; has full column rank, which, in turn, will
be true if the equation is identified.!> For (15-15b), we require that

Yie/] o
=l

X’jé,‘/'
The second part is assumed in (15-4). For the first, by direct substitution,

1. Y X\ /X'X\ 7! /X,
lim =Y. X(X'X)"X’e; = pli ! L.
plim - X(X'X) € phm( T )( T ) ( T )

lim1
pum

The third part on the right converges to zero, whereas the other two converge to finite
matrices, which confirms the result. Since § j2sis is an IV estimator, we can just invoke
Theorem 5.3 for the asymptotic distribution. A proof of asymptotic efficiency requires
the establishment of the benchmark, which we shall do in the discussion of the MLE.

As a final shortcut that is useful for programming purposes, we note that if X is
regressed on X, then a perfect fit is obtained, so X i = X;. Using the idempotent matrix
(I — M), (15-20) becomes

Y,A-MY; Y.I- M)X,} -
02518 =

X;(1-MY; X,(I-MX,

Y;(I- My,
Xj(L— M)y, |
Thus, )
8jasus = (252,17 2)y, (15-21)

= [(ZX)XX)"' X'Z)]ZX) X' X)Xy,

where all columns of Z’; are obtained as predictions in a regression of the correspondin
j

15§chmidt (1976, pp. 150-151) provides a proof of this result.
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column of Z; on X. This equation also results in a useful simplification of the estimated
asymptotic covariance matrix,

Est.Asy. Var[§, s15] = Gjj [Z',Zj]_l-

It is important to note that o; is estimated by

v =28y ~Z;8))
T 9

6jj =
using the original data, not Z;.

156.5.4 GMM ESTIMATION

The GMM estimator in Section 10.4 is, with a minor change of notation, precisely the
set of procedures we have been using here. Using this method, however, will allow us
to generalize the covariance structure for the disturbances. We assume that

Vit =28 +&ji,

wherezj, = [Y}, ;] (we use the capital Y, to denote the L; included endogenous vari-
ables). Thus far, we have assumed that ¢, in the jth equation is neither heteroscedastic
nor autocorrelated. There is no need to impose those assumptions at this point. Autocor-
relation in the context of a simultaneous equations model is a substantial complication,
however. For the present, we will consider the heteroscedastic case only.

The assumptions of the model provide the orthogonality conditions,

E[xe] = E[x/(yj: — Z’jlaj)] =0.

If x, is taken to be the full set of exogenous variables in the model, then we obtain the
criterion for the GMM estimator,

q= {e(z“;j),x]wfjl [X e(;i, 8]~)]

= m(3;)’'W;;'m@,),

where
1T
m(é;) = T Z x:(yjs —2,8;) and W;jl = the GMM weighting matrix.
=1

Once again, this is precisely the estimator defined in Section 10.4 [see (10-17)]. If the
disturbances are assumed to be homoscedastic and nonautocorrelated, then the optimal
weighting matrix will be an estimator of the inverse of

W;; = Asy. Var[v'Tm())]

T
|1 '
= plim T g XX (Vjie —z,]'taf)z
r=1

Lz
= plim7w E 0jiX/X;
=1

Ojj (X'X)

= pli
plim ——
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The constant o ;; is irrelevant to the solution. If we use (X'X) ! as the weighting matrix,
then the GMM estimator that minimizes q is the 2SLS estimator.

The extension that we can obtain here is to allow for heteroscedasticity of un-
known form. There is no need to rederive the earlier result. If the disturbances are
heteroscedastic, then

1< X'2;X
W;; = plim ?Z wjj XX, = plim—— 1

The weighting matrix can be estimated with White’s consistent estimator—see (10-23) —
if a consistent estimator of §; is in hand with which to compute the residuals. One is, since
2SLS ignoring the heteroscedasticity is consistent, albeit inefficient. The conclusion
then is that under these assumptions, there is a way to improve on 2SLS by adding
another step. The name 3SLS is reserved for the systems estimator of this sort. When
choosing between 2.5-stage least squares and Davidson and MacKinnon’s suggested
“heteroscedastic 2SLS, or H2SLS,” we chose to opt for the latter. The estimator is
based on the initial two-stage least squares procedure. Thus,

§jmasis = [Z,X(So,j) ' X'Z;] 7 [Z,X(So, ;) Xy, ],

where

T

Sy = Piay. ! 8 2

0.jj = QXX (¥je — Z;,825L5)"
=1

The asymptotic covariance matrix is estimated with
Est.Asy. Var[SjVHQSLs] = [Z;X(SO,H)_lX'Zj]_l.

Extensions of this estimator were suggested by Cragg (1983) and Cumby, Huizinga, and
Obstfeld (1983).

15.5.5 LIMITED INFORMATION MAXIMUM LIKELIHOOD
AND THE K CLASS OF ESTIMATORS

The limited information maximum likelihood (LIML) estimator is based on a single
equation under the assumption of normally distributed disturbances; LIML is efficient
among single-equation estimators. A full {lengthy) derivation of the log-likelihood is
provided in Theil (1971) and Davidson and MacKinnon (1993). We will proceed to
the practical aspects of this estimator and refer the reader to these sources for the
background formalities. A result that emerges from the derivation is that the LIML
estimator has the same asymptotic distribution as the 2SLS estimator, and the latter
does not rely on an assumption of normality. This raises the question why one would
use the LIML technique given the availability of the more robust (and computationally
simpler) alternative. Small sample results are sparse, but they would favor 2SLS as
well. [See Phillips (1983).] The one significant virtue of LIML is its invariance to the
normalization of the equation. Consider an example in a system of equations,

=y + y3ys +x1p1 + X262 + €.
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An equivalent equation would be

2 =y1(1/v2) + ys(=y3/v2) + x1(=B1/v2) + X2 (=Ba/v2) + €1(=1/»)
=+ »s+ b+ xb, + &

The parameters of the second equation can be manipulated to produce those of the first.
But, as you can easily verify, the 2SLS estimator is not invariant to the normalization of
the equation—2SLS would produce numerically different answers. LIML would give
the same numerical solutions to both estimation problems suggested above.

The LIML, or least variance ratio estimator, can be computed as follows.! Let

W/ =EJE, (15-22)
where
Y =1y, Y]
and
E] = MY} = [I-X;(X/X;) ' X/]Y". (15-23)

Each column of E(} is a set of least squares residuals in the regression of the corre-
sponding column of Y(} on X;, that is, the exogenous variables that appear in the jth

equation. Thus, W‘; is the matrix of sums of squares and cross products of these residuals.
Define

W; =E/E} = Y)'[T- X(X'X) 'X']YY. (15-24)

That is, W} is defined like WY except that the regressions are on all the xs in the model,
not just the ones in the jth equation. Let

A1 = smallest characteristic root of (W})*lw‘;. (15-25)

This matrix is asymmetric, but all its roots are real and greater than or equal to 1.
Depending on the available software, it may be more convenient to obtain the identical
smallest root of the symmetric matrix D = (W})~//2W%(W*)~1/2. Now partition W{into

0 0r
w4, wY

wi=| } corresponding to [y;, Y;], and partition W! likewise. Then, with
W, ji

these parts in hand,

YL = [W(,)-,- - Alw}j]_l (W(; - MW}) (15-26)

and
BiimL = (XXX (v = Y9 o)

Note that B is estimated by a simple least squares regression. [See (3-18).] The asymp-
totic covariance matrix for the LIML estimator is identical to that for the 2SLS

16The least variance ratio estimator is derived in Johnston (1984). The LIML estimator was derived by
Anderson and Rubin (1949, 1950).



CHAPTER 15 4 Simultaneous-Equations Models 403

estimator.!” The implication is that with normally distributed dlsturbances 2SLS is
fully efficient.

The “k class” of estimators is defined by the following form

Yy, —kViv ]]

Xy,
We have already considered three members of the class, OLS with & = 0, 2SLS with
k =1, and, it can be shown, LIML with k = ;. [This last result follows from (15-26).]
There have been many other k-class estimators derived; Davidson and MacKinnon
(1993, pp. 649-651) and Mariano (2001) give discussion. It has been shown that all
members of the k class for which k convergesto 1 at arate faster than 1/,/z have the same
asymptotic distribution as that of the 2SLS estimator that we examined earlier. These
are largely of theoretical interest, given the pervasive use of 2SLS or OLS, save for an
important consideration. The large- sample properties of all k-class estimator estimators
are the same, but the finite-sample properties are possibly very different. Davidson and
MacKinnon (1993) and Mariano (1982, 2001) suggest that some evidence favors LIML

when the sample size is small or moderate and the number of overidentifying restnctlons
is relatively large.

i Y)Y, —kV/V; YX;] !

8k =
XY, X' X;

15.5.6 TWO-STAGE LEAST SQUARES IN MODELS
THAT ARE NONLINEAR IN VARIABLES

The analysis of simultaneous equations becomes considerably more complicated when
the equatlons are nonlinear. Amemiya presents a general treatment of nonlinear mod-

els.'® A case that is broad enough to include many practical applications is the one
analyzed by Kelejian (1971),

Yi =viif(y. %) + mo by, x) + -+ X8, +¢e;,1

which is an extension of (7-4). Ordinary least squares will be inconsistent for the same
reasons as before, but an I'V estimator, if one can be devised, should have the familiar
properties. Because of the nonlinearity, it may not be possible to solve for the reduced-
form equations (assuming that they exist), 4;;(x) = E[ f;; | x]. Kelejian shows that 2SLS
based on a Taylor series approximation to /;;, using the linear terms, higher powers, and
cross-products of the variables in x, will be consistent. The analysis of 2SLS presented
earlier then applies to the Z; consisting of [f; I f; j»---» X;]. [The alternative approach
of using fitted values for y appears to be inconsistent. See Kelejian (1971) and Goldfeld
and Quandt (1968).]

In a linear model. if an equation fails the order condition, then it cannot be esti-
mated by 2SLS. This statement is not true of Kelejian’s approach, however, since taking
higher powers of the regressors creates many more linearly independent instrumental
variables. If an equation in a linear model fails the rank condition but not the order

This is proved by showing that both estimators are members of the “k class” of estimators, all of which have
the same asymptotic covariance matrix. Details are given in Theil (1971) and Schmidt (1976).

'8 Amemiya (1985, pp. 245-265). See, as well, Wooldridge (2002, ch. 9).

192SLS for models that are nonlinear in the parameters is discussed in Chapters 10 and 11 in connection with
GMM estimators.
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condition, then the 2SLS estimates can be computed in a finite sample but will fail to
exist asymptotically because XIT; will have short rank. Unfortunately, to the extent
that Kelejian’s approximation never exactly equals the true reduced form unless it hap-
pens to be the polynomial in x (unlikely), this built-in control need not be present,
even asymptotically. Thus, although the model in Example 15.7 (below) is unidentified,
computation of Kelejian’s 2SLS estimator appears to be routine.

Example 15.7 A Nonlinear Model of Industry Structure
The following model of industry structure and performance was estimated by Strickland
and Weiss (1976). Note that the square of the endogenous variable, C, appears in the first

equation.

A=oay+a1M+ a:Cd + asC +a4C2 + asGr + agD + ¢4,
C = Bo+ B1A+ ﬂgMES-f— £o,
M = yo + 1K + y2Gr + y3C + y4Gd + ys A+ ysMES + €3.

S = industry sales M = price cost margin,

A = advertising/S, D = durable goods industry(0/1),

C = concentration, Gr = industry growth rate,

Cd = consumer demand/S, K = capital stock/S,
MES = efficient scale/S, Gd = geographic dispersion.

Since the only restrictions are exclusions, we may check identification by the rule rank
[A;, A5l = M — 1 discussed in Section 15.3.1. Identification of the first equation requires

’ o ﬂZ 0 0
[As, As] = L/e g VJ

to have rank two, which it does unless g, = 0. Thus, the first equation is identified by the
presence of the scale variable in the second equation. It is easily seen that the second
equation is overidentified. But for the third,

’ ’ . [04 o
(A, Ay = [(;‘ 0 3] "),
which has rank one, not two. The third equation is not identified. It passes the order condition
but fails the rank condition. The failure of the third equation is obvious on inspection. There
is no variable in the second equation that is not in the third. Nonetheless, it was possible to

obtain two stage least squares estimates because of the nonlinearity of the model and the
results discussed above.

156.6 SYSTEM METHODS OF ESTIMATION

We may formulate the full system of equations as

y: Zl 0 te 0 81 &1
Y2 0 Z2 cee 0 82 &7

R N : 15-27)
YM 0 0 - Zy||ou eM

or

y=2Zé+e,
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where
- E[e|X]=0, and E[ee'|X]=Z =231 (15-28)
[see (14-3).] The least squares estimator,
d=(2'72]"'Z%,

is equation-by-equation ordinary least squares and is inconsistent. But even if ordinary
least squares were consistent, we know from our results for the seemingly unrelated
regressions model in the previous chapter that it would be inefficient compared with
an estimator that makes use of the cross-equation correlations of the disturbances.
For the first issue, we turn once again to an IV estimator. For the second, as we did in
Chapter 14, we use a generalized least squares approach. Thus, assuming that the matrix
of instrumental variables, W satisfies the requirements for an IV estimator, a consistent
though inefficient estimator would be

drv = [WZ]'W'y. (15-29)

Analogous to the seemingly unrelated regressions model, a more efficient estimator
would be based on the generalized least squares principle,

$vors = [WETQDZ]'W(E ' @Dy (15-30)

or, where W; is the set of instrumental variables for the jth equation,

1r M . N

oUW\ Z; oW Z, ... o'MWIZy Yoot Wiy;

. c2WiZy  oBW)Z, - o*MWZy Z?ilngw'zyj
dv,GLs =

oMWy Zy oWy Zy - oMWY Zy] | TY MWy,

Three techniques are generally used for joint estimation of the entire system of
equations: three-stage least squares, GMM, and full information maximum likelihood.

15.6.1 THREE-STAGE LLEAST SQUARES
Consider the IV estimator formed from

Z, 0 .. 0

. 0
W =7 = diag[X(X'X)"1X'Z;, ..., X(X'X)"!X'Zy] =

. N
)
]

e
e
N
=

The IV estimator
81\/ = [Z’Z]‘li’y

is simply equation-by-equation 2SLS. We have already established the consistency of
2SLS. By analogy to the seemingly unrelated regressions model of Chapter 14, however,
we would expect this estimator to be less efficient than a GLS estimator. A natural
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candidate would be
Ssis = [Z/(Z7'@DZ]'Z/(=7 @ Dy.

For this estimator to be a valid IV estimator, we must establish that
1.
plim ?Z’(E*1 ®De =0,

which is M sets of equations, each one of the form

1M
plim T Z o''Zie; = 0.
j=1
Each is the sum of vectors all of which converge to zero, as we saw in the development
of the 2SLS estimator. The second requirement, that

1,
plim TZ’():‘l QDZ #£ 0,

and that the matrix be nonsingular, can be established along the lines of its counterpart
for 2SLS. Identification of every equation by the rank condition is sufficient. [But, see
Mariano (2001) on the subject of “weak instruments.”]

Once again using the idempotency of I — M, we may also interpret this estimator
as a GLS estimator of the form

§3s1s = [2/(E7' @ DZ]"'Z/ (2 @ Dy. | (15-31)
The appropriate asymptotic covariance matrix for the estimator is
Asy. Var[dsg1s] = [Z/ (T @ DZ] L, (15-32)

where Z = diag[XI1;, X;]. This matrix would be estimated with the bracketed inverse
matrix in (15-31).

Using sample data, we find that Z may be estimated with Z. The remaining difficulty
is to obtain an estimate of X. In estimation of the multivariate regression model, for
efficient estimation (that remains to be shown), any consistent estimator of X will
do. The designers of the 3SLS method, Zellner and Theil (1962), suggest the natural
choice arising out of the two-stage least estimates. The three-stage least squares (3SLS)
estimator is thus defined as follows: ¢

1. Estimate II by ordinary least squares and compute Y for each equation.
2. Compute d; 515 for each equation; then

. Wi —Z8)(y;, - Z;8))
Oi]' = T .

3. Compute the GLS estimator according to (15-31) and an estimate of the
asymptotic covariance matrix according to (15-32) using Z and .

(15-33)

It is also possible to iterate the 3SLS computation. Unlike the seemingly unrelated
regressions estimator, however, this method does not provide the maximum likelihood
estimator, nor does it improve the asymptotic efficiency.?

20 A Jacobian term needed to maximize the log-likelihood is not treated by the 3SLS estimator. See Dhrymes
(1973).



CHAPTER 15 4 Simultaneous-Equations Models 407

By showing that the 3SLS estimator satisfies the requirements for an IV estimator,
we have established its consistency. The question of asymptotic efficiency remains. It can
be shown that among all IV estimators that use only the sample information embodied
in the system, 3SLS is asymptotically efficient.?! For normally distributed disturbances, it
can also be shown that 3SLS has the same asymptotic distribution as the full-information
maximum likelihood estimator, which is asymptotically efficient among all estimators.
A direct proof based on the information matrix is possible, but we shall take a much
simpler route by simply exploiting a handy result due to Hausman in the next section.

15.6.2 FULL-INFORMATION MAXIMUM LIKELIHOOD

Because of their simplicity and asymptotic efficiency, 2SLS and 3SLS are used almost
exclusively (when ordinary least squares is not used) for the estimation of simultaneous-
equations models. Nonetheless, it is occasionally useful to obtain maximum likelihood
estimates directly. The full-information maximum likelihood (FIML) estimator is based
on the entire system of equations. With normally distributed disturbances, FIML is
efficient among all estimators.

The FIML estimator treats all equations and all parameters jointly. To formulate
the appropriate log-likelihood function, we begin with the reduced form,

Y=XII+V,

where each row of V is assumed to be multivariate normally distributed, with
E[v; | X]=0 and covariance matrix, E [v,v, | X] = . The log-likelihood for this model
is precisely that of the seemingly unrelated regressions model of Chapter 14. For the
moment, we can ignore the relationship between the structural and reduced-form pa-
rameters. Thus, from (14-20),

T
InL=-=[MIn@7)+Ini@| + tr(R7'W)],
where

Wi = —(y - Xn})'(y - Xn9)

Nl -

and
n(]]» = jth column of II.

This function is to be maximized subject to all the restrictions imposed by the structure.
Make the substitutions T = —BI' land @ = (I"'YEr'sothat ! = rx-Ir". Thus,

T 1
InL= -5 MInQ2r)+Inj(T'YEr!| +tr{T[I‘E‘ll”(Y+XBI“1)’(Y+XBF‘1)]}],
which can be simplified. First,

T T
—§1n|(l“’1)’21“1] = —Elnm + T'In|T|.

2See Schmidt (1976) for a proof of its efficiency relative to 2SLS.
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Second, I'(Y + XBT 1Y = I''Y’ + B’X’. By permuting I' from the beginning to the
end of the trace and collecting terms,

T 1(YT + XBY (YT + XB)

tr(R7'W) =t
1( ) r T

Therefore, the log-likelihood is
InL= ‘% [M InQr) — 2In|T| +tr(Z7'S) + In|Z[],
where
sij = %(YI} +XB;)'(YT; + XB)).

[In terms of nonzero parameters, s;; is 6;; of (15-32).]
In maximizing In L, it is necessary to impose all the additional restrictions on the
structure. The trace may be written in the form

Zi]\il ijﬂ oll(yi = Yiy; = XiB)'(yj — Yy —X;B))
T .

Maximizing In L subject to the exclusions in (15-34) and any other restrictions, if neces-
sary, produces the FIML estimator. This has all the desirable asymptotic properties of
maximum likelihood estimators and, therefore, is asymptotically efficient among esti-
mators of the simultaneous-equations model. The asymptotic covariance matrix for the
FIML estimator is the same as that for the 3SLS estimator.

A usefulinterpretation of the FIML estimator is provided by Dhrymes (1973, p. 360)
and Hausman (1975, 1983). They show that the FIML estimator of 4 is a fixed point in
the equation

tr(z7'8) = (15-34)

e = [2G8) 37 @ DZ] 2@ L @ by] = [ZZ]7'Zy,

where
vz eV ... &MI
~1271 A2y A2Mgr
A ol / ot / N Y/ 2
Zo'Een=| 7 Y =7
~ 1M A2My ~ MMy
MLy, MLy - VMY,
and

Z; =[X1;.X;].
f1 is computed from the structural estimates:
fl; = M; columns of —BI'™*
and

1 A . . .
6',']' = T(yl - Z,‘Si)l(yj - Z,-Sj) and Y = (E_l)ij.
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This result implies that the FIML estimator is also an IV estimator. The asymptotic
covariance matrix for the FIML estimator follows directly from its form as an IV
estimator. Since this matrix is the same as that of the 3SLS estimator, we conclude
that with normally distributed disturbances, 3SLS has the same asymptotic distribution
as maximum likelihood. The practical usefulness of this important result has not gone
unnoticed by practitioners. The 3SLS estimator is far easier to compute than the FIML
estimator. The benefit in computational cost comes at no cost in asymptotic efficiency.
As always, the small-sample properties remain ambiguous, but by and large, where a
systems estimator is used, 3SLS dominates FIML nonetheless.?? (One reservation arises
from the fact that the 3SLS estimator is robust to nonnormality whereas, because of the
term In |T'| in the log-likelihood, the FIML estimator is not. In fact, the BSLS and FIML
estimators are usually quite different numerically.)

15.6.3 GMM ESTIMATION

The GMM estimator for a system of equations is described in Section 14.4.3. As in the
single-equation case, a minor change in notation produces the estimators of this chapter.
As before, we will consider the case of unknown heteroscedasticity only. The extension
to autocorrelation is quite complicated. [See Cumby, Huizinga, and Obstfeld (1983).]
The orthogonality conditions defined in (14-46) are

E[x:eji] = E[x,(yje — 2),8;)] = 0.

If we consider all the equations jointly, then we obtain the criterion for estimation of
all the model’s parameters,

T T

o
=

-
]
—_
~
Il
—_

[e(z,, Sj)’X} [W]/" [X’e(z,, 6,)]

M M _
=Y > m@;)[W'm@),
j=1 1=1
where
m(s;) = Z X (Vjr — ]t
and

[W]/! = block jI of the weighting matrix, W1,

As before, we consider the optimal weighting matrix obtained as the asymptotic covari-
ance matrix of the empirical moments, m(é;). These moments are stacked in a single
vector m(8). Then, the jlth block of Asy. Var[+/T m(8)] is

M 1 d ’ ! 4 : 1 A ’
b = phm{T Z [xex; (Ve — 25,8,) (e — z,,61)]} = plim <T ;wj,,,x,xt) .

=1

ZZPC-GIVE(8), SAS, and TSP(4.2) are three computer programs that are widely used. A survey is given in
silk (1996).
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If the disturbances are homoscedastic, then @ =o[plim(X'X/T)] is produced.
Otherwise, we obtain a matrix of the form ®; =plim[X'Q;X/T]. Collecting terms,
then, the criterion function for GMM estimation is

’ 1

X' (y1 —Zi8))]/T oy O - W] [ XM -Zi6))/T
[X'(y2 —Z28)]/ T @y Pn - Poy [X'(y2 — Z28)]/ T
q =
(X' (ym—Zudw))/T] (P11 Prn -+ Pum X'(yu — Zudm)]/ T

For implementation, ®; can be estimated with

T
. 1
b= ; XX, (v — 2, d;) e — 2;,d0),

where d; is a consistent estimator of &;. The two-stage least squares estimator is a
natural choice. For the diagonal blocks, this choice is the White estimator as usual. For
the off-diagonal blocks, it is a simple extension. With this result in hand, the first-order
conditions for GMM estimation are

AIX’()’Z Z,8))
-y (G e [

<l . . . . . .
where &' is the j/th block in the inverse of the estimate if the center matrix in q.
The solution is

v
81.6Mu ZX'X'2, Z)XP’X'Z, --- ZXS'MX'Zy -1 ,;[1
820mm | _ ZXOUX'Z,  LXS2X'Z, - ZXSMX'Zy j_ll'zxqﬂfy,-
0 m.GMM 7 XOMX'Z, 7/, X®MX'Z,; - L) X®MVX'Zy .
> 2y X oMy,
2 i

The asymptotic covariance matrix for the estimator would be estimated with 7" times
the large inverse matrix in brackets.
Several of the estimators we have already considered are special cases:

o If<I>, =6,;(X'X/T) andd>]1_0t0r]¢l then5 is 2SLS.
e 1Ifd; =0forj+#/ then 8 is H2SLS, the single- equatlon GMM estimator.
o Ifd; =6;(XX/T), then 8 is 3SLS.

As before, the GMM estimator brings efficiency gains in the presence of heteroscedas-
ticity. If the disturbances are homoscedastic, then it is asymptotically the same as 3SLS,
[although in a finite sample, it will differ numerically because S, will not be identical
to é'jl(X'X)].
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15.6.4 RECURSIVE SYSTEMS AND EXACTLY
IDENTIFIED EQUATIONS

Finally, there are two special cases worth noting. First, for the fully recursive model,

1. T isupper triangular, with ones on the diagonal. Therefore, |I'| = 1 and In|T| = 0.
2. X isdiagonal, sonjX| = Z 1 Ino;; and the trace in the exponent becomes

M
B 11 ,
tr(718) = oo Wi Yy = XiB )y =Yy —XB)).
j=1 "

The log-likelihood reduces to In L = Zj‘i 1In Lj, where

1
lnLj:—;[ln(2n)+lnajj]—é—a(y- /}I] Xﬂ )(yj ]yj—X]-ﬂ]-).
Therefore, the FIML estimator for this model is just equation-by-equation least squares.
We found ecarlier that ordinary least squares was consistent in this setting. We now find
that it is asymptotically efficient as well.

The second interesting special case occurs when every equation is exactly identified.
In this case, K7 = M; in every equation It is straightforward to show that in this case,

2SLS = 3SLS = LIML = FIML, and §; = [X'Z;]"'X'y;.

15.7 COMPARISON OF METHODS KLEIN’S
MODEL I

The preceding has described a large number of estimators for simultaneous-equations
models. As an example, Table 15.3 presents limited- and full-information estimates for
Klein’s Model I based on the original data for 1921 and 1941. The H3SLS estimates
for the system were computed in two pairs, (C, I) and (C, W?), because there were
insufficient observations to fit the system as a whole. The first of these are reported for
the C equation.?

It might seem, in light of the entire discussion, that one of the structural estimators
described previously should always be preferred to ordinary least squares. which, alone
among the estimators considered here, is inconsistent. Unfortunately, the issue is not so
clear. First, it is often found that the OLS estimator is surprisingly close to the structural
estimator. It can be shown that at least in some cases, OLS has a smaller variance about
its mean than does 2SLS about its mean, leading to the possibility that OLS might be
more precise in a mean-squared-error sense.” But this result must be tempered by
the finding that the OLS standard errors are, in all likelihood, not useful for inference
purposes.?> Nonetheless, OLS is a frequently used estimator. Obviously, this discussion

BThe asymptotic covariance matrix for the LIML estimator will differ from that for the 2SLS estimator
in a finite sample because the estimator of ¢;; that multiplies the inverse matrix will differ and because in
computing the matrix to be inverted, the value of “k” (see the equation after (15-26)) is one for 2SLS and the
smallest root in (15-25) for LIML. Asymptotically, k equals one and the estimators of ¢;; are equivalent.
%48ee Goldberger (1964, pp. 359-360).

ZCragg (1967).
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ABLE 15.3 Estimates of Klein’s Model | (Est:mated Asymptotic Standard

Limited-Information Estimates Full-Information Estimates

2SLS 3SLS
C 166 0017 0216 0.810 16.4 0.125 0.163 0.790
(132)  (0.118) (0.107)  (0.040) (130)  (0.108)  (0.100)  (0.033)
I 203 0.150 0616  —0.158 282 —0.013 0.756  —0.195
(7.54)  (0.173) (0.162)  (0.036) 679)  (0.162)  (0.153)  (0.038)
WP 150 0439 0.147 0.130 1.80 0.400 0.181 0.150
(L15)  (0.036) (0.039)  (0.029) (112)  (0.032)  (0.034)  (0.028)
LIML FIML
c 171 -0222  039% 0.823 183  —0.232 0.388 0.802
(L84)  (0202) (0.174)  (0.055) (249)  (0312)  (0217)  (0.036)
1 226 0075 0680  —0.168 273~ —0.801 1052 —0.146
(924)  (0219) (0.203)  (0.044) (794)  (0491)  (0.353)  (0.30)
wr o 1.53 0434 0.151 0.132 5.79 0.234 0.285 0.235
(240)  (0.137) (0.135)  (0.065) (1.80)  (0.049)  (0.045)  (0.035)
GMM (H2SLS) GMM (H3SLS)
C 143 0.090  0.143 0.864 157 0.068 0.167 0.829
(0.897)  (0.062) (0.065)  (0.029) (0.951)  (0.091)  (0.080)  (0.033)
I 235 0.146 0591 —0.171 20.6 0213 —0520  —0.157
(6.40)  (0.120) (0.129)  (0.031) (4.89)  (0.087)  (0.099)  (0.025)
WP 3.06 0455 0.106 0.130 2.09 0.446 0.131 0.112
(0.64)  (0.028) (0.030)  (0.022) (0.510)  (0.019)  (0.021)  (0.021)
OLS I3SLS
C 162 0193  0.09 0.796 16.6 0.165 0.177 0.766
(1.30)  (0.091) (0.091)  (0.040) (122)  (0.09)  (0.090)  (0.035)
I 101 0480 0333 —0.112 29 —0356 101 —0.260
(547)  (0.097) (0.101)  (0.027) (10.6)  (0.260)  (0.249)  (0.051)
wr 150 0439 0.146 0.130 2.62 0375 0.194 0.168
(127)  (0.032) (0.037)  (0.032) (120)  (0.031)  (0.032)  (0.029)

is relevant only to finite samples. Asymptotically, 2SLS must dominate OLS, and in a
correctly specified model, any full-information estimator must dominate any limited-
information one. The finite-sample properties are of crucial importance. Most of what
we know is asymptotic properties, but most applications are based on rather small or
moderately sized samples.

The large difference between the inconsistent OLS and the other estimates suggests
the bias discussed earlier. On the other hand, the incorrect sign on the LIML and FIML
estimate of the coefficient on P and the even larger difference of the coefficient on P_4
in the C equation are striking. Assuming that the equation is properly specified, these
anomalies would likewise be attributed to finite sample variation, because LIML and
2SLS are asymptotically equivalent. The GMM estimator is also striking. The estimated
standard errors are noticeably smaller for all the coefficients. It should be noted, how-
ever, that this estimator is based on a presumption of heteroscedasticity when in this
time series, there is little evidence of its presence. The results are broadly suggestive,
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but the appearance of having achieved something for nothing is deceiving. Our earlier
results on the efficiency of 2SLS are intact. If there is heteroscedasticity, then 2SLS is
no longer fully efficient, but, then again, neither is H2SLS. The latter is more efficient
than the former in the presence of heteroscedasticity, but it is equivalent to 2SLS in its
absence.

Intuition would suggest that systems methods, 3SLS, GMM, and FIML, are to
be preferred to single-equation methods, 2SLS and LIML. Indeed, since the advan-
tage is so transparent, why would one ever choose a single-equation estimator? The
proper analogy is to the use of single-equation OLS versus GLS in the SURE model of
Chapter 14. An obvious practical consideration is the computational simplicity of the
single-equation methods. But the current state of available software has all but elimi-
nated this advantage.

Although the systems methods are asymptotically better, they have two problems.
First, any specification error in the structure of the model will be propagated throughout
the system by 3SLS or FIML. The limited-information estimators will, by and large,
confine a problem to the particular equation in which it appears. Second, in the same
fashion as the SURE model, the finite-sample variation of the estimated covariance
matrix is transmitted throughout the system. Thus, the finite-sample variance of 3SLS
may well be as large as or larger than that of 2SLS. Although they are only single
estimates, the results for Klein’s Model I give a striking example. The upshot would
appear to be that the advantage of the systems estimators in finite samples may be more
modest than the asymptotic results would suggest. Monte Carlo studies of the issue
have tended to reach the same conclusion.?® -

8 SPECIFICATION TESTS

In a strident criticism of structural estimation, Liu (1960) argued that all simultaneous-
equations models of the economy were truly unidentified and that only reduced forms
could be estimated. Although his criticisms may have been exaggerated (and never
gained wide acceptance), modelers have been interested in testing the restrictions that
overidentify an econometric model.

The first procedure for testing the overidentifying restrictions in a model was devel-
oped by Anderson and Rubin (1950). Their likelihood ratio test statistic is a by-product
of LIML estimation:

LR = x’[K — M;] = T(x; — 1),

where A; is the root used to find the LIML estimator. [See (15-27).] The statistic has
a limiting chi-squared distribution with degrees of freedom equal to the number of
overidentifying restrictions. A large value is taken as evidence that there are exogenous
variables in the model that have been inappropriately omitted from the equation be-
ing examined. If the equation is exactly identified, then K7 — M; =0, but at the same
time, the root will be 1. An alternative based on the Lagrange multiplier principle was

26See Cragg (1967) and the many related studies listed by Judge et al. (1985, pp. 646-653).
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proposed by Hausman (1983, p. 433). Operationally, the test requires only the calcula-
tion of T R?, where the R? is the uncentered R? in the regressionof é; = y; —Z;$; onall
the predetermined variables in the model. The estimated parameters may be computed
using 2SLS, LIML, or any other efficient limited-information estimator. The statistic has
a limiting chi-squared distribution with K} — M; degrees of freedom under the assumed
specification of the model.

Another specification error occurs if the variables assumed to be exogenous in the
system are, in fact, correlated with the structural disturbances. Since all the asymptotic
properties claimed earlier rest on this assumption, this specification error would be
quite serious. Several authors have studied this issue.”’ The specification test devised by
Hausman that we used in Section 5.5 in the errors in variables model provides a method
of testing for exogeneity in a simultaneous-equations model. Suppose that the variable
x¢ is in question. The test is based on the existence of two estimators, say § and 8*, such
that

under Hy: (x° is exogenous), both & and §* are consistent and 8* is asymptotically
efficient,
under H;: (x€ is endogenous), 4 is consistent, but ¢* is inconsistent.

Hausman bases his version of the test on 8 being the 2SLS estimator and §* being the
3SLS estimator. A shortcoming of the procedure is that it requires an arbitrary choice of
some equation that does not contain x° for the test. For instance, consider the exogeneity
of X_, in the third equation of Klein’s Model 1. To apply this test, we must use one of
the other two equations.

A single-equation version of the test has been devised by Spencer and Berk (1981).
We suppose that x® appears in equation j, so that

y; =Y,»y,-+X,-/3,-+x69+e,-
= [Y,-,Xj,xe]sj +eéj.

Then §* is the 2SLS estimator, treating x® as an exogenous variable in the system,
whereas 8 is the IV estimator based on regressing y; on Y;, X;, %%, where the least
squares fitted values are based on all the remaining exogenous variables, excluding x°.
The test statistic is then

w = (8" — 8) {Est. Var[8] — Est. Var[§*]} ' (§* — §), (15-35)

which is the Wald statistic based on the difference of the two estimators. The statistic
has one degree of freedom. (The extension to a set of variables is direct.)

Example 15.8 Testing Overidentifying Restrictions
For Klein’s Model |, the test statistics and critical values for the chi-squared distribution
for the overidentifying restrictions for the three equations are given in Table 15.4. There
are 20 observations used to estimate the model and eight predetermined variables. The
overidentifying restrictions for the wage equation are rejected by both single-equation tests.
There are two possibilities. The equation may well be misspecified. Or, as Liu suggests, in a

2TWu (1973), Durbin (1954), Hausman (1978), Nakamura and Nakamura (1981) and Dhrymes (1994).
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Chi-Squared Critical Values

A LR TR? K- M; x3121 X231
Consumption 1.499 9.98 8.77 2
Investment 1.086 1.72 1.81 3 5% 5.99 7.82
Wages 2.466 293 12.49 3 1% 9.21 11.34

dynamic model, if there is autocorrelation of the disturbances, then the treatment of lagged
endogenous variables as if they were exogenous is a specification error.

The results above suggest a specification problem in the third equation of Klein’s Model I.
To pursue that finding, we now apply the preceding to test the exogeneity of X_¢. The two
estimated parameter vectors are

8* =[1.5003, 0.43886,0.14667, 0.13040] (i.e., 2SLS)
and
8 = [1.2524,0.42277,0.167614, 0.13062].

Using the Wald criterion, the chi-squared statistic is 1.3977. Thus, the hypothesis (such as it
is) is not rejected.

15.9 PROPERTIES OF DYNAMIC MODELS

In models with lagged endogenous variables, the entire previous time path of the exoge-
nous variables and disturbances, not just their current values, determines the current
value of the endogenous variables. The intrinsic dynamic properties of the autoregres-
sive model, such as stability and the existence of an equilibrium value, are embodied in
their autoregressive parameters. In this section, we are interested in long- and short-run
multipliers, stability properties, and simulated time paths of the dependent variables.

15.9.1 DYNAMIC MODELS AND THEIR MULTIPLIERS
The structural form of a dynamic model is
yIT+xB+y ,®=e¢. (15-36)

If the model contains additional lags, then we can add additional equations to the system
of the formy, , =y,_;. For example, a model with two periods of lags would be written

0 (1)]+X§[B 0)+[yi1 yiaf r’l I] _[e 0]

[y: Yt—ll’[ o, 0

which can be treated as a model with only a single lag—this is in the form of (15-36).
The reduced form is

Y =xI+y,_A+v,
where

n=-Br!
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and
A=—or!
From the reduced form,
9
Y.m = l-Ikm
axt!k

The short-run effects are the coefficients on the current xs, so II is the matrix of impact
multipliers. By substituting for y,_; in (15-36), we obtain

Y, =X I +x_ A +y, ,A> + (v, +V,_|A).

(This manipulation can easily be done with the lag operator—see Section 19.2.2—but it
is just as convenient to proceed in this fashion for the present.) Continuing this method
for the full ¢ periods, we obtain
. t—1 t—1
V=[x AT+ y,A +) v A" (15-37)
s=0 s=0
This shows how the initial conditions y; and the subsequent time path of the exogenous
variables and disturbances completely determine the current values of the endogenous
variables. The coefficient matrices in the bracketed sum are the dynamic multipliers,

Yr.m
8-xt—s k

= (A" )im.

The cumulated multipliers are obtained by adding the matrices of dynamic multipliers.
If we let s go to infinity in (15-37), then we obtain the final form of the model,?®

00 00
yi=> [X_ OAT+Y [V, ,A’).
s=0 s=0

Assume for the present that lim, ,., A’ =0. (This says that A is nilpotent.) Then
the matrix of cumulated multipliers in the final form is

I+ A+A%+-.]=0I-A]™

These coefficient matrices are the long-run or equilibrium multipliers. We can also
obtain the cumulated multipliers for s periods as

cumulated multipliers = TI[I — A]~![T — A®].
Suppose that the values of x were permanently fixed at X. Then the final form shows

that if there are no disturbances, the equilibrium value of y; would be

o]

y =) [KOA]= Z NA° =xT[I- AL (15-38)
s=0

2810 some treatments, (15-37) is labeled the final form instead. Both forms eliminate the lagged values of the
dependent variables from the current value. The dependence of the first form on the initial values may make
it simpler to interpret than the second form. .
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Therefore, the equilibrium multipliers are

0 Ym 1
Dm_mma= Ay
Y [TI¢ ) i

Some examples are shown below for Klein’s Model I.

15.9.2 STABILITY

It remains to be shown that the matrix of multipliers in the final form converges. For
the analysis to proceed, it is necessary for the matrix A’ to converge to a zero matrix.
Although A is not a symmetric matrix, it will still have a spectral decomposition of the
form

A =CAC, (15-39)

where A is a diagonal matrix containing the characteristic roots of A and each column
of C is a right characteristic vector,

Ac,, = AmCn. (15-40)

Since A is not symmetric, the elements of A (and C) may be complex. Nonetheless,
(A-105) continues to hold:

A’ = CAC'CAC ! = CcA?C : o (15-41)
and
A’ = CA'CL,

It is apparent that whether or not A’ vanishes as ¢ — oo depends on its characteristic
roots. The condition is | ,,| < 1. For the case of acomplex root, |Ay,| = |a + bi| = v/a? + b2
For a given model, the stability may be established by examining the largest or dominant
root.

With many endogenous variables in the model but only a few lagged variables, A is
a large but sparse matrix. Finding the characteristic roots of large, asymmetric matrices
is a rather complex computation problem (although there exists specialized software
for doing so). There is a way to make the problem a bit more compact. In the context
of an example, in Klein’s Model I, A is 6 x 6, but with three rows of zeros, it has only
rank three and three nonzero roots. (See Table 15.5 in Example 15.9 following.) The
following partitioning is useful. Let y;; be the set of endogenous variables that appear
in both current and lagged form, and let y;; be those that appear only in current form.
Then the model may be written

’ 7 ’ ’ ! A A ! '
Vi Yol=x[I T]+ [y, yt_1,2][01 02}4'[":1 Vil (15-42)

The characteristic roots of A are defined by the characteristic polynomial, |A — AI| = 0.
For the partitioned model, this result is
A—A A

=0.
0 —Al
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We may use (A-72) to obtain
|A = M| = (=1)"]A; =1 =0,

where M, is the number of variables in y,. Consequently, we need only concern ourselves
with the submatrix of A that defines explicit autoregressions. The part of the reduced
form defined by y, = x,II, +y,_; ;A is not directly relevant.

15.9.3 ADJUSTMENT TO EQUILIBRIUM

The adjustment of a dynamic model to an equilibrium involves the following conceptual
experiment. We assume that the exogenous variables x; have been fixed at a level x for a
long enough time that the endogenous variables have fully adjusted to their equilibrium
¥ [defined in (15-38)]. In some arbitrarily chosen period, labeled period 0, an exogenous
one-time shock hits the system, so thatin period t =0, x, = xg # X. Thereafter, x, returns
to its former value X, and x; = for all ¢ > 0. We know from the expression for the final
form that, if disturbed, y, will ultimately return to the equilibrium. That situation is
ensured by the stability condition. Here we consider the time path of the adjustment.
Since our only concern at this point is with the exogenous shock, we will ignore the
disturbances in the analysis.

Attime 0,y, = x{,IT +y’_, A. But prior to time 0, the system was in equilibrium, so
v, = x,IT1 + ¥ A. The initial displacement due to the shock to x is

Yo — ¥ =xI—yd—A).
Substituting X' I = §'(I — A) produces
Yo—¥ =& - %OIL (15-43)
As might be expected, the initial displacement is determined entirely by the exogenous

shock occurring in that period. Since x, = X after period 0, (15-37) implies that

-1
Y, =D XA +yAf
s=0

=XIMJA-A)""T-A) +y,A
=7 —yA +y,Af
=¥ + (o —¥)A"

Thus, the entire time path is a function of the initial displacement. By inserting (15-43),
we see that

Y, =§ + & —X)HIA". (15-44)

Since lim;_,o, A’ = 0, the path back to the equilibrium subsequent to the exogenous
shock (xg — %) is defined. The stability condition imposed on A ensures that if the
system is disturbed at some point by a one-time shock, then barring further shocks or
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disturbances, it will return to its equilibrium. Since yy, X, X, and IT are fixed for all time,
the shape of the path is completely determined by the behavior of A’, which we now
examine.

In the preceding section, in (15-39) to (15-42), we used the characteristic roots of
A to infer the (lack of) stability of the model The spectral decomposition of A’ given
in (15-41) may be written

M
t ’
= E ApCmd,,
m=1

where ¢, is the mth column of C and d/,, is the mth row of C~1.%° Inserting this result in
(15-44), gives

¥ —§) =[x — %)'H] ZA’ cmd'

m=1

M
=5 K% — %) Tle,d), ] kagm

NN

(Note that this equation may involve fewer than M terms, since some of the roots may
be zero. For Klein’s Model I, M = 6, but there are only three nonzero roots.) Since g,
depends only on the initial conditions and the parameters of the model, the behavior of
the time path of (y, — y) is completely determined by A/,. In each period, the deviation
from the equilibrium is a sum of M terms of powers of A, times a constant. (Each
variable has its own set of constants.) The terms in the sum behave as follows:

Amreal > 0, A! adds a damped exponential term,
imreal <0, Al adds a damped sawtooth term,
Am complex, A/ adds a damped sinusoidal term.
If we write the complex root A, =a + bi in polar form, then A = A[cos B + i sin B],

where A={[a? + b?]'/? and B=arccos(a/A) (in radians), the sinusoidal components
each have amplitude A’ and period 27/ B.%

Example 15.9 Dynamic Model
The 2SLS estimates of the structure and reduced form of Klein’s Model | are given in
Table 15.5. (Only the nonzero rows of & and A are shown.) A
For the 2SLS estimates of Klein’s Model |, the relevant submatrix of A is

K P K
0.172 -0.051 —-0.008{ X_4
A= 151 0848 0.743| P_4.

-0.287 -0.161 0.818( K_4

DGee Section A.6.9.
NGoldberger (1964, p. 378).
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Equation

Variable C I we X P K

Cc 1 0 0 -1 0 0

1 0 1 0 -1 0 -1
P= wp —0.810 0 1 0 1 0

X 0 0 -0.439 1 -1 0

P —0.017 —0.15 0 0 1 0

K 0 0 0 0 0 1

1 —16.555  —20.278 -1.5 0 0 0

we —0.810 0 0 0 0 0
B= T 0 0 0 0 1 0

G 0 0 0 -1 0 0

A 0 0 —0.13 0 0 0

X 0 0 —0.147 0 0 0
&= P, —0.216 —0.6160 0 0 0 0

K, 0 0.158 0 0 0 -1

1 42.80 25.83 31.63 68.63 37.00 25.83

we 1.35 0.124 0.646 1.47 0.825 0.125
fl= T —0.128 —0.176 —0.133 —0.303 -117 —0.176

G 0.663 0.153 0.797 1.82 1.02 0.153

A 0.159 —0.007 0.197 0.152 —0.045 ~0.007

X, 0.179 ~0.008 0222 0172 —0.051 —0.008
A= P, 0.767 0.743 0.663 1.511 0.848 0.743

K, —0.105 —0.182 —-0.125 —0.287 —0.161 0.818

The characteristic roots of this matrix are 0.2995 and the complex pair 0.7692 4+
0.3494/ =0.8448 [cos 0.4263 + i sin 0.4263]. The moduli of the complex roots are 0.8448,
s0 we conclude that the model is stable. The period for the oscillations is 27/0.4263 = 14.73
periods (years). (See Figure 15.2.)

For a particular variable or group of variables, the various multipliers are subma-
trices of the multiplier matrices. The dynamic multipliers based on the estimates in
Table 15.5 for the effects of the policy variables 7" and G on output, X, are plotted in
Figure 15.2 for current and 20 lagged values. A plot of the period multipliers against
the lag length is called the impulse response function. The policy effects on output are
shown in Figure 15.2. The damped sine wave pattern is characteristic of a dynamic sys-
tem with imaginary roots. When the roots are real, the impulse response function is a
monotonically declining function, instead.

This model has the interesting feature that the long-run multipliers of both policy
variables for investment are zero. This is intrinsic to the model. The estimated long-
run balanced-budget multiplier for equal increases in spending and taxes is 2.10+
(—1.48) =0.62.
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--+-- Spending

0 5 10 15 20
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sponse Function.

15.10 SUMMARY AND CONCLUSIONS

The models surveyed in this chapter involve most of the issues that arise in analysis of
linear equations in econometrics. Before one embarks on the process of estimation, it
is necessary to establish that the sample data actually contain sufficient information to
provide estimates of the parameters in question. This is the question of identification.
Identification involves both the statistical properties of estimators and the role of theory
in the specification of the model. Once identification is established, there are numerous
methods of estimation. We considered a number of single equation techniques including
least squares, instrumental variables, GMM, and maximum likelihood. Fully efficient use
of the sample data will require joint estimation of all the equations in the system. Once
again, there are several techniques —these are extensions of the single equation methods
including three stage least squares, GMM, and full information maximum likelihood.
In both frameworks, this is one of those benign situations in which the computationally
simplest estimator is generally the most efficient one. In the final section of this chapter,
we examined the special properties of dynamic models. An important consideration
in this analysis was the stability of the equations. Modern macroeconometrics involves
many models in which one or more roots of the dynamic system equal one, so that
these models, in the simple autoregressive form are unstable. In terms of the analysis
in Section 15.9.3, in such a model, a shock to the system is permanent—the effects do
not die out. We will examine a model of monetary policy with these characteristics in
Example 19.6.8.
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e Final form

 Full information

¢ Fully recursive model

¢ GMM estimation
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* Problem of identification
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Exercises
1. Consider the following two-equation model:

n=ny+ Buxi + Borxp + Barxs + €1,
Y2 =y + Brax1 + Bnxo + Bnxs + .

a. Verify that, as stated, neither equation is identified.
b. Establish whether or not the following restrictions are sufficient to identify (or
partially identify) the modet:

(1) a1 =P =0,

(2) Bu=pn=0,

(3) n=0,

(4) 1 =y2and 3 =0,

(5) o1 = 0 and ,331 = 0,

(6) y1 =0and oy =0,

(7) B+ Bn=1,

(8) 012=0, Bo1 = P2 = B31 = B2 =0,

(9) 012=0,811 =Ba1 = B2 = P31 = B = 0.
2. Verify the rank and order conditions for identification of the second and third

behavioral equations in Klein’s Model 1.



3.

4.

5.
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Check the identifiability of the parameters of the following model:

(1 y2 0 O

v 1 v oyu
0 vy 1 yxu

jvas vz 0 1

i » y» ol

0 B Bz Pu
Ba 1 0 PBn
+x1 o oxoxy xs)[Bu Bn B 0| +ler e 63 eg)
0 0 Bs Bu ‘ '
0 Bs2 0 0 ]

Obtain the reduced form for the model in Exercise 1 under each of the assumptions
made in parts a and in parts bl and b9.
The following model is specified:

Y =ny:+ Buxi +e,
V2 =yay1 + Poxs + Bxs + e

All variables are measured as deviations from their means. The sample of 25
observations produces the following matrix of sums of squares and cross products:

yi Y2 x1 x2 x3
v 20 6 4 3 5
»wi6 10 3 6 7
x4 3 5 2 3
|3 6 2 10 8
x»|S5 7 3 8 15

a. Estimate the two equations by OLS.
b. Estimate the parameters of the two equations by 2SLS. Also estimate the asymp-
totic covariance matrix of the 2SLS estimates.
. Obtain the LIML estimates of the parameters of the first equation.
. Estimate the two equations by 3SLS.
e. Estimate the reduced-form coefficient matrix by OLS and indirectly by using
your structural estimates from Part b.

[aTaN o}

. For the model

i =yiy2 + Buxi + Baxe + €1,
Y2 = vay1 + Baxs + Baaxs + &2,

show that there are two restrictions on the reduced-form coefficients. Describe a
procedure for estimating the model while incorporating the restrictions.
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7. An updated version of Klein’s Model I was estimated. The relevant submatrix of
Ais
—0.1899 —0.9471 -0.8991
A=1| 0 09287 0
—0.0656 —0.0791  0.0952

Is the model stable?
8. Prove that

Y’/-S j
T
9. Prove that an underidentified equation cannot be estimated by 2SLS.

plim =0, — 27



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47

