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FINITE-SAMPLE PROPERTIES
OF THE LEAST SOQOUARES
- ESTIMATOR

LYY=

INTRODUCTION

Chapter 3 treated fitting the linear regression to the data as a purely algebraic exercise.
We will now examine the least squares estimator from a statistical viewpoint. This
chapter will consider exact, finite-sample results such as unbiased estimation and the
precise distributions of certain test statistics. Some of these results require fairly strong
assumptions, such as nonstochastic regressors or normally distributed disturbances. In
the next chapter, we will turn to the properties of the least squares estimator in more
general cases. In these settings, we rely on approximations that do not hold as exact
results but which do improve as the sample size increases.

There are other candidates for estimating 8. In a two-variable case, for example, we
might use the intercept, a, and slope, b, of the line between the points with the largest
and smallest values of x. Alternatively, we might find the  and b that minimize the sum
of absolute values of the residuals. The question of which estimator to choose is usually
based on the statistical properties of the candidates, such as unbiasedness, efficiency,
and precision. These, in turn, frequently depend on the particular distribution that we
assume produced the data. However, a number of desirable properties can be obtained
for the least squares estimator even without specifying a particular distribution for the
disturbances in the regression.

In this chapter, we will examine in detail the least squares as an estimator of the
model parameters of the classical model (defined in the following Table 4.1). We begin
in Section 4.2 by returning to the question raised but not answered in Footnote 1, Chap-
ter 3, that is, why least squares? We will then analyze the estimator in detail. We take
Assumption Al, linearity of the model as given, though in Section 4.2, we will consider
briefly the possibility of a different predictor for y. Assumption A2, the identification
condition that the data matrix have full rank is considered in Section 4.9 where data
complications that arise in practice are discussed. The near failure of this assumption
is a recurrent problem in “real world” data. Section 4.3 is concerned with unbiased
estimation. Assumption A3, that the disturbances and the independent variables are
uncorrelated, is a pivotal resultin this discussion. Assumption A4, homoscedasticity and
nonautocorrelation of the disturbances, in contrast to A3, only has relevance to whether
least squares is an optimal use of the data. As noted, there are alternative estimators
available, but with Assumption A4, the least squares estimator is usually going to be
preferable. Sections 4.4 and 4.5 present several statistical results for the least squares
estimator that depend crucially on this assumption. The assumption that the data in X
are nonstochastic, known constants, has some implications for how certain derivations
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42 CHAPTER 4 4 Finite-Sample Properties of the Least Squares Estimator

TABLE 4.1

Al. Linearity: y; = x;181 + xnf2 + - - + BrXix + €.

A2. Full rank: The n x K sample data matrix, X has full column rank.

A3. Exogeneity of the independent variables: E[¢; | x;;, X2, ..., x;x] =0, i, j=1,...,n
There is no correlation between the disturbances and the independent variables.

Ad4. Homoscedasticity and nonautocorrelation: Each disturbance, ¢; has the same finite
variance, o2 and is uncorrelated with every other disturbance, & i

AS. Exogenously generated data (x;1, x;2, ..., xx)i=1,...,n
A6. Normal distribution: The disturbances are normally distributed.

proceed, but in practical terms, is a minor consideration. Indeed, nearly all that we do
with the regression model departs from this assumption fairly quickly. It serves only as
a useful departure point. The issue is considered in Section 4.5. Finally, the normality
of the disturbances assumed in A6 is crucial in obtaining the sampling distributions of
several useful statistics that are used in the analysis of the linear model. We note that
in the course of our analysis of the linear model as we proceed through Chapter 9, all
six of these assumptions will be discarded.

4.2 MOTIVATING LEAST SQUARES

Ease of computation is one reason that least squares is so popular. However, there are
several other justifications for this technique. First, least squares is a natural approach
to estimation, which makes explicit use of the structure of the model as laid out in the
assumptions. Second, even if the true model is not a linear regression, the regression
line fit by least squares is an optimal linear predictor for the dependent variable. Thus, it
enjoys a sort of robustness that other estimators do not. Finally, under the very specific
assumptions of the classical model, by one reasonable criterion, least squares will be
the most efficient use of the data. We will consider each of these in turn.

4.21 THE POPULATION ORTHOGONALITY CONDITIONS

Let x denote the vector of independent variables in the population regression model and
for the moment, based on assumption A5, the data may be stochastic or nonstochastic.
Assumption A3 states that the disturbances in the population are stochastically or-
thogonal to the independent variables in the model; that is, E[e | x] =0. It follows that
Covlx, ¢] =0. Since (by the law of iterated expectations—Theorem B.1) E{E[¢ |x]} =
E[e] = 0, we may write this as

ExE.[xe] = ExE)[x(y —X'B)] =0
or
EE[xy] = Edxx]B. @)

(The right-hand side is not a function of y so the expectation is taken only over x.) Now,
recall the least squares normal equations, X'y = X'Xb. Divide this by n and write it as
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a summation to obtain

(% Zx,-yi) = (}1 Zx,-x;> b. 42
i=1 i=1

Equation (4-1) is a population relationship. Equation (4-2) is a sample analog. Assuming
the conditions underlying the laws of large numbers presented in Appendix D are met,
the sums on the left hand and right hand sides of (4-2) are estimators of their counterparts
in (4-1). Thus, by using least squares, we are mimicking in the sample the relationship in
the population. We’ll return to this approach to estimation in Chapters 10 and 18 under
the subject of GMM estimation.

4.2.2 MINIMUM MEAN SQUARED ERROR PREDICTOR

As an alternative approach, consider the problem of finding an optimal linear predictor
for y. Once again, ignore Assumption A6 and, in addition, drop Assumption Al that
the conditional mean function, E [y |x] is linear. For the criterion, we will use the mean
squared error rule, so we seek the minimum mean squared error linear predictor of y,
which we’ll denote X'y . The expected squared error of this predictor is

MSE = E E [y — x'y]>.
This can be written as
b2
MSE = E,x{y — E[y|x]}2+Ey_x{E[y|x]—xy} :

We seek the y that minimizes this expectation. The first term is not a function of y, so
only the second term needs to be minimized. Note that this term is not a function of y,
so the outer expectation is actually superfluous. But, we will need it shortly, so we will
carry it for the present. The necessary condition is

VEyE{[E(y|x) —xy]’} [ Ey|x) — X’;’F}
ay ay
= —2E,E{x[E(y|x) —x'y]} =0.

Note that we have interchanged the operations of expectation and differentiation in
the middle step, since the range of integration is not a function of y. Finally, we have
the equivalent condition

:EyEx{

E,Ex[xE(y |x)] = E, E[xx']y.

The left hand side of thisresultis £ E,[x E(y | x)] = Cov[x, E(y | x) |+ E [X| Ex[E(y | x)] =
Cov[x, y] + E[x]E[y] = ExE,[xy]. (We have used theorem B.2.) Therefore, the neces-
sary condition for finding the minimum MSE predictor is

EE)[xy] = EE,[xx]y. @3)

This is the same as (4-1), which takes us to the least squares condition once again.
Assuming that these expectations exist, they would be estimated by the sums in
(4-2), which means that regardless of the form of the conditional mean, least squares
is an estimator of the coefficients of the minimum expected mean squared error lin-
ear predictor. We have yet to establish the conditions necessary for the if part of the
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theorem, but this is an opportune time to make it explicit:

SR

THEOREM 4.1 Minimum Mean Squared Error Predictor |
If the data generating mechanism generating (X;, ¥)i=1... , Is such that the law of %
large numbers applies to the estimators in (4-2) of the matrices in (4-1), then the %
minimum expected squared error linear predictor of y; is estimated by the least
squares regression line.

BB

4.2.3 MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION

Finally, consider the problem of finding a linear unbiased estimator. If we seek the one
which has smallest variance, we will be led once again to least squares. This proposition
will be proved in Section 4.4.

The preceding does not assert that no other competing estimator would ever be
preferable to least squares. We have restricted attention to linear estimators. The result
immediately above precludes what might be an acceptably biased estimator. And, of
course, the assumptions of the model might themselves not be valid. Although AS and
A6 are ultimately of minor consequence, the failure of any of the first four assumptions
would make least squares much less attractive than we have suggested here.

4.3 UNBIASED ESTIMATION

The least squares estimator is unbiased in every sample. To show this, write
b=XX)"Xy=X'X)'X'(XB +¢) = g+ (XX) Xe. 4-4)

Now, take expectations, iterating over X;

Eb|X] =8+ E[X'X) X'e|X].
By Assumption A3, the second term is 0, so

Eb|X]=8.

Therefore,

E[b] = Ex{E[b|X]} = Ex[B] = B.

The interpretation of this result is that for any particular set of observations, X, the least
squares estimator has expectation . Therefore, when we average this over the possible
values of X we find the unconditional mean is 8 as well.

Example 4.1 The Sampling Distribution of a Least Squares Estimator
The following sampling experiment, which can be replicated in any computer program that
provides a random number generator and a means of drawing a random sample of observa-
tions from a master data set, shows the nature of a sampling distribution and the implication of
unbiasedness. We drew two samples of 10,000 random draws on w; and x; from the standard
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FIGURE 4.1 Histogram for Sampled Least Squares Regression

normal distribution (mean zero, variance 1). We then generated a set of ¢;s equal to 0.5w; and
¥i =0.540.5x; 4+ &;. We take this to be our population. We then drew 500 random samples
of 100 observations from this population, and with each one, computed the least squares
slope (using at replication r, b, = [Zg(xj, —)?r)y/r]/[z;ii {(x;r — %:)2]). The histogram in
Figure 4.1 shows the result of the experiment. Note that the distribution of slopes has a
mean roughly equal to the “true value” of 0.5, and it has a substantial variance, reflecting the
fact that the regression slope, like any other statistic computed from the sampile, is a random
variable. The concept of unbiasedness relates to the central tendency of this distribution of
values obtained in repeated sampling from the population.

4.4 THE VARIANCE OF THE LEAST SQUARES

ESTIMATOR AND THE GAUSS MARKOV
THEOREM

If the regressors can be treated as nonstochastic, as they would be in an experimental
situation in which the analyst chooses the values in X, then the sampling variance
of the least squares estimator can be derived by treating X as a matrix of constants.
Alternatively, we can allow X to be stochastic, do the analysis conditionally on the
observed X, then consider averaging over X as we did in the preceding section. Using
(4-4) again, we have

b=XX)"'X'(XB+e) =8+ (XX)'Xe. 4-5)

Since we can write b = 8 + Ae, where A is (X’X)~1X’, b is a linear function of the
disturbances, which by the definition we will use makes it a linear estimator. As we have
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seen, the expected value of the second term in (4-5) is 0. Therefore, regardless of the
distribution of &, under our other assumptions, b is a linear, unbiased estimator of 8. The
covariance matrix of the least squares slope estimator is

Var[b|X] = E[(b - B)(b — B) | X]
= E[(X'X)"'X'ee’X(X'X) ! | X]
= X'X)" X' E[ee’ | X]X(X'X) !
= X'X) X' (¢ DXX'X) ™!
=o2(X'X)L.
Example 4.2 Sampling Variance in the Two-Variable Regression Model

Suppose that X contains only a constant term (column of 1s) and a single regressor x. The
lower right element of a2(X'X) " is

0,2

27:1 (xi —X)? .

Note, in particular, the denominator of the variance of b. The greater the variation in x, the
smaller this variance. For example, consider the problem of estimating the slopes of the two
regressions in Figure 4.2. A more precise result will be obtained for the data in the right-hand
panel of the figure.

Var[b|x] =Var[b— g|x] =

We will now obtain a general result for the class of linear unbiased estimators of 8.
Let by = Cy be another linear unbiased estimator of 8, where Cis a K x n matrix. If by
is unbiased, then

E[Cy|X] = E[(CXB + Ce) | X] = B,

which implies that CX = L. There are many candidates. For example, consider using just
the first K (or, any K) linearly independent rows of X. Then C = [Xj! : 0], where X!
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is the transpose of the matrix formed from the K rows of X. The covariance matrix of
bo can be found by replacing (X'X) !X’ with Cin (4-5); the result is Var[bg | X] = o*CC".
Now let D = C — (X’X)"'X’ so Dy = by — b. Then,

Var[by | X] = o?[(D + (X'X)"'X)(D + X'X)'X)'].
We know that CX = I = DX + (X’X)~1(X’X), so DX must equal 0. Therefore,
Var[by | X] = 62(X'’X)”" 4+ 0?DD’ = Var[b | X] + o’DD'.
Since a quadratic form in DD’ is ¢'DD’q = z'z > 0, the conditional covariance matrix
of by equals that of b plus a nonnegative definite matrix. Therefore, every quadratic

form in Var[byg | X] is larger than the corresponding quadratic form in Var[b | X], which
implies a very important property of the least squares coefficient vector.

R B e

THEOREM 4.2 Gauss-Markov Theorem

In the classical linear regression model with regressor matrix X, the least squares
estimator b is the minimum variance linear unbiased estimator of B. For any
vector of constants w, the minimum variance linear unbiased estimator of W in
the classical regression model is w'b, where b is the least squares estimator.

The proof of the second statement follows from the previous derivation, since the
variance of w'b is a quadratic form in Var[b | X], and likewise for any by, and proves
that each individual slope estimator by is the best linear unbiased estimator of gy. (Let
w be all zeros except for a one in the kth position.) The theorem is much broader than
this, however, since the result also applies to every other linear combination of the ele-
ments of 8.

e

4.5 THE IMPLICATIONS OF STOCHASTIC
REGRESSORS

The preceding analysis is done conditionally on the observed data. A convenient method
of obtaining the unconditional statistical properties of b is to obtain the desired results
conditioned on X first, then find the unconditional result by “averaging” (e.g., by in-
tegrating over) the conditional distributions. The crux of the argument is that if we
can establish unbiasedness conditionally on an arbitrary X, then we can average over
X’s to obtain an unconditional result. We have already used this approach to show
the unconditional unbiasedness of b in Section 4.3, so we now turn to the conditional
variance. :
The conditional variance of b is

Var[b | X] = 62(X’X) .
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For the exact variance, we use the decomposition of variance of (B-70):
| Var[b] = Ex[Var[b|X]] + Varx[E[b| X]].
The second term is zero since E[b|X] = g8 for all X, so
Var[b] = Ex[c*(X'X)"!] = o? Ex[(XX)7!].

Our earlier conclusion is altered slightly. We must replace (X'X)~! with its expected
value to get the appropriate covariance matrix, which brings a subtle change in the
interpretation of these results. The unconditional variance of b can only be described
in terms of the average behavior of X, so to proceed further, it would be necessary to
make some assumptions about the variances and covariances of the regressors. We will
return to this subject in Chapter 5.

We showed in Section 4.4 that ’ R S

Var[b | X] < Var[by | X]

for any by # b and for the specific X in our sample. But if this inequality holds for every
particular X, then it must hold for

Var[b] = Ex[Var[b|X]].

That is, if it holds for every particular X, then it must hold over the average value(s)
of X.

The conclusion, therefore, is that the important results we have obtained thus far for
the least squares estimator, unbiasedness, and the Gauss-Markov theorem hold whether
or not we regard X as stochastic.

THEOREM 4.3 Gauss—-Markov Theorem (Concluded)
In the classical linear regression model, the least squares estimator b is the

minimum variance linear unbiased estimator of B whether X is stochastic or
nonstochastic, so long as the other assumptions of the model continue to hold.

4.6 ESTIMATING THE VARIANCE
OF THE LEAST SQUARES ESTIMATOR

If we wish to test hypotheses about § or to form confidence intervals, then we will require
a sample estimate of the covariance matrix Var[b|X] = ¢2(X'X)~". The population
parameter o' remains to be estimated. Since o2 is the expected value of & and ¢; is an
estimate of ¢;, by analogy,

1 n
=1y e
ni:l
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would seem to be a natural estimator. But the least squares residuals are imperfect
estimates of their population counterparts; e; = y; —x'b = ¢ — X, (b — B). The estimator
is distorted (as might be expected) because B is not observed directly. The expected
square on the right-hand side involves a second term that might not have expected
value zero.

The least squares residuals are

e =My = M[X8 + ¢] = Me,
asMX = 0.[See (3-15).] An estimator of o will be based on the sum of squared residuals:
| e =e¢'Me. (4-6)
The expected value of this quadratic form is
Ele’e|X] = E[¢'Me | X].

The scalar ’Me is a 1 x 1 matrix, so it is equal to its trace. By using the result on cyclic
permutations (A-94),

E[tr(e'Me) | X] = E[tr(Mee’) | X].
Since M is a function of X, the result is
tr(ME[ee’ | X]) = tr(Mo’I) = o*tr(M).
The trace of M is
tr{l, — X(X'X)"'X'] = tr(L,) — tr[(X’X)"'X'X] = tr,,) — tr(Ix) = n — K.
Therefore, ‘
El¢e|X] = (n— K)o?,

so the natural estimator is biased toward zero, although the bias becomes smaller as the
sample size increases. An unbiased estimator of o2 is
2 e'e

=20 (7)

The estimator is unbiased unconditionally as well, since E[s?]= Fx{E[s?|X]} =
Ex[0?] =0?. The standard error of the regression is s, the square root of s2. With 2,
we can then compute ’

Est. Var[b | X] = s2(X’X)"L.

Henceforth, we shall use the notation Est. Var[-] to indicate a sample estimate of the
sampling variance of an estimator. The square root of the kth diagonal element of
this matrix, {[sz(X’X)‘l]kk}l/ ? is the standard error of the estimator by, which is often
denoted simply “the standard error of b;.”
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4.7 THE NORMALITY ASSUMPTION AND
BASIC STATISTICAL INFERENCE

To this point, our specification and analysis of the regression model is semiparametric
(see Section 16.3). We have not used Assumption A6 (see Table 4.1), normality of e,
in any of our results. The assumption is useful for constructing statistics for testing
hypotheses. In (4-5), b is a linear function of the disturbance vector e. If we assume that
¢ has a multivariate normal distribution, then we may use the results of Section B.10.2
and the mean vector and covariance matrix derived earlier to state that

b|X ~ N[B,s*X'X)71]. 4-8)

This specifies a multivariate normal distribution, so each element of b | X is normally
distributed:

bl X ~ N[ o2 (X' X)id |- (4-9)

The distribution of bis conditioned on X. The normal distribution of b in a finite sample is
a consequence of our specific assumption of normally distributed disturbances. Without
this assumption, and without some alternative specific assumption about the distribution
of &, we will not be able to make any definite statement about the exact distribution
of b, conditional or otherwise. In an interesting result that we will explore at length
in Chapter 5, we will be able to obtain an approximate normal distribution for b, with
or without assuming normally distributed disturbances and whether the regressors are
stochastic or not.

4.7.1 TESTING A HYPOTHESIS ABOUT A COEFFICIENT

Let S* be the kth diagonal element of (X’X)™!. Then, assuming normality,
b — B

52 Gkk
has a standard normal distribution. If o2 were known, then statistical inference about

Bi. could be based on zx. By using s? instead of o2, we can derive a statistic to use in
place of zx in (4-10). The quantity

(n—Kjs? _ee _ () m (%) (4-11)

o? o? o o

%= 4-10)

is an idempotent quadratic form in a standard normal vector (¢/0). Therefore, it has a
chi-squared distribution with rank (M) = trace(M) = n — K degrees of freedom.! The
chi-squared variable in (4-11) is independent of the standard normal variable in (4-10).
To prove this, it suffices to show that
b — ron_lwr/ €
PF _ xx)ix (%) 412)
o
is independent of (n — K)s?/o2. In Section B.11.7 (Theorem B.12), we found that a suf-
ficient condition for the independence of a linear form Lx and an idempotent quadratic

I'This fact is proved in Section B.10.3. _ R RN
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form x’Ax in a standard normal vector x is that LA = 0. Letting /o be the x, we find
that the requirement here would be that (X’X)~'X'M = 0. It does, as seen in (3-15). The
general result is central in the derivation of many test statistics in regression analysis.

THEOREM 4.4 Independence of b and s2 ]
If e is normally distributed, then the least squares coefficient estimator b is sta- i
ustically independent of the residual vector e and therefore, all functions of e, |
including s*.

[

Therefore, the ratio

(b = Br) Vo2 Sk b= B

- = 4-13
R/ TR STy Y Vet 13

has a ¢ distribution with (n — K) degrees of freedom.? We can use # to test hypotheses
or form confidence intervals about the individual elements of g.
A common test is whether a parameter gy is significantly different from zero. The
appropriate test statistic ‘
t= L3 4-14)
Shy
is presented as standard output with the other results by most computer programs. The
test is done in the usual way. This statistic is usually labeled the ¢ ratio for the estimator
br. If | b |/sp, > top, Where tys2 is the 100(1 — «/2) percent critical value from the ¢
distribution with (n — K) degrees of freedom, then the hypothesis is rejected and the
coefficient is said to be “statistically significant.” The value of 1.96, which would apply
for the 5 percent significance level in a large sample, is often used as a benchmark value
when a table of critical values is not immediately available. The ¢ ratio for the test of
_ the hypothesis that a coefficient equals zero is a standard part of the regression output
of most computer programs.

Example 4.3 Earnings Equation
Appendix Table F4.1 contains 753 observations used in Mroz’s (1987) study of labor supply
behavior of married women. We will use these data at several points below. Of the 753 indi-
viduals in the sample, 428 were participants in the formal labor market. For these individuals,
we will fit a semilog earnings equation of the form suggested in Example 2.2;

In earnings = By + B age + Bz age® + B4 education + s kids + ¢,

where earnings is hourly wage times hours worked, education is measured in years of school-
ing and kids is a binary variable which equals one if there are children under 18 in the house-
hold. (See the data description in Appendix F for details.) Regression results are shown in
Table 4.2. There are 428 observations and 5 parameters, so the t statistics have 423 degrees

2See (B-36) in Section B.4.2. It is the ratio of a standard normal variable to the square root of a chi-squared
variable divided by its degrees of freedom. -
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Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044
R? based on 428 observations 0.040995
Variable Coefficient Standard Error t Ratio
Constant 3.24009 1.7674 ‘ 1.833
Age (0.20056 0.08386 2.392
Age? —0.0023147 0.00098688 —2.345
Education 0.067472 0.025248 2.672
Kids —0.35119 0.14753 —2.380

Estimated Covariance Matrix for b (e—n = times 10™")

Constant Age Age? Education Kids
3.12381

—0.14409 0.0070325
0.0016617 —8.23237e—5 9.73928e—7

—0.0092609 5.08549¢—5 —4.96761e—7 0.00063729
0.026749 —0.0026412 3.84102e-5 —5.46193e—5 0.021766

of freedom. For 95 percent significance levels, the standard normal value of 1.96 is appropri-
ate when the degrees of freedom are this large. By this measure, all variables are statistically
significant and signs are consistent with expectations. It will be interesting to investigate
whether the effect of Kids is on the wage or hours, or both. We interpret the schooling vari-
able to imply that an additional year of schooling is associated with a 6.7 percent increase in
earnings. The quadratic age profile suggests that for a given education level and family size,
earnings rise to the peak at —b,/(2bs) which is about 43 years of age, at which they begin
to decline. Some points to note: (1) Our selection of only those individuals who had posi-
tive hours worked is not an innocent sample selection mechanism. Since individuals chose
whether or not to be in the labor force, it is likely (almost certain) that earnings potential was
a significant factor, along with some other aspects we will consider in Chapter 22. (2) The
earnings equation is a mixture of a labor supply equation—hours worked by the individual,
and a labor demand outcome—the wage is, presumably, an accepted offer. As such, it is
unclear what the precise nature of this equation is. Presumably, it is a hash of the equations
of an elaborate structural equation system. '

4.7.2 CONFIDENCE INTERVALS FOR PARAMETERS

A confidence interval for 8; would be based on (4-13). We could say that
Prob(b; — Taj25p < Br < by + l‘a/zsbk) =1-q,

where 1 — « is the desired level of confidence and ¢, is the appropriate critical value
from the ¢ distribution with (n — K) degrees of freedom.

Example 4.4 Confidence Interval for the Income Elasticity
of Demand for Gasoline
Using the gasoline market data discussed in Example 2.3, we estimated following demand
equation using the 36 observations. Estimated standard errors, computed as shown above,
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are given in parentheses below the least squares estimates.
In(G/pop) = —7.737 — 0.05910In Pz + 1.3733In income

(0.6749)  (0.03248) (0.075628)
—0.126801n Py — 0.11871InP,c + €.
(0.12699) (0.081337)

To form a confidence interval for the income elasticity, we need the critical value from the
t distribution with n — K = 36 — 5 degrees of freedom. The 95 percent critical value is
2.040. Therefore, a 95 percent confidence interval for g, is 1.3733 + 2.040(0.075628), or
[1.2191, 1.5278].

We are interested in whether the demand for gasoline is income inelastic. The hypothesis
to be tested is that g, is less than 1. For a one-sided test, we adjust the critical region and
use the {, critical point from the distribution. Values of the sample estimate that are greatly
inconsistent with the hypothesis cast doubt upon it. Consider testing the hypothesis

Ho:ﬂ/ <1 versus H1:,3/21.
The appropriate test statistic is
_ 1.3733 -1

t= 0.075628

The critical value from the ¢ distribution with 31 degrees of freedom is 2.04, which is far less
than 4.936. We conclude that the data are not consistent with the hypothesis that the income
elasticity is less than 1, so we reject the hypothesis.

=4.936.

4.7.3 CONFIDENCE INTERVAL FOR A LINEAR COMBINATION
OF COEFFICIENTS: THE OAXACA DECOMPOSITION

With normally distributed disturbances, the least squares coefficient estimator, b, is
normally distributed with mean 8 and covariance matrix ¢2(X’X)~!. In Example 4.4,
we showed how to use this result to form a confidence interval for one of the elements
of B. By extending those results, we can show how to form a confidence interval for a
linear function of the parameters. Oaxaca’s (1973) decomposition provides a frequently
used application.

Let w denote a K x 1 vector of known constants. Then, the linear combination
¢ = whbis normally distributed with mean y = w8 and variance o2 = W[ 2(X'X) ! ]w,
which we estimate with 52 = w/[s2(X’X)~!]w. With these in hand, we can use the earlier
results to form a confidence interval for y:

Probc — typsc <y <c+lypsd]=1—a.

This general result can be used, for example, for the sum of the coefficients or for a
difference.

Consider, then, Oaxaca’s application. In a study of labor supply, separate wage
regressions are fit for samples of n,, men and ny women. The underlying regression
models are

) .
Inwage,,; =X, ;B +mi» i=1,...,0n
and

Inwage,, =x; Br+ep;, j=1,....n;.
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The regressor vectors include sociodemographic variables, such as age, and human cap-
ital variables, such as education and experience. We are interested in comparing these
two regressions, particularly to see if they suggest wage discrimination. Oaxaca sug-
gested a comparison of the regression functions. For any two vectors of characteristics,

E[Inwage, ;| — E[lnwage ;] =X, B, — X ;B¢
=X B — X By + X085 — X5 1By
=X}, (B — By) + Xmi — Xp;) By

The second term in this decomposition is identified with differences in human capital
that would explain wage differences naturally, assuming that labor markets respond
to these differences in ways that we would expect. The first term shows the differential
in log wages that is attributable to differences unexplainable by human capital; holding
these factors constant at x,, makes the first term attributable to other factors. Oaxaca
suggested that this decomposition be computed at the means of the two regressor vec-
tors, X,, and X ¢, and the least squares coefficient vectors, b, and by. If tlﬁgressions
contain constant terms, then this process will be equivalent to analyzing In y,, — In yy.

We are interested in forming a confidence interval for the first term, which will
require two applications of our result. We will treat the two vectors of sample means as
known vectors. Assuming that we have two independent sets of observations, our two
estimators, b,, and by, are independent with means 8,, and B f and covariance matrices
o2(X! X,,)"! and aj%(X’fX £)~L. The covariance matrix of the difference is the sum of
these two matrices. We are forming a confidence interval for X/, d where d = by, — by.
The estimated covariance matrix is

Est. Var[d] = s,zn(X;nX,,,)_1 + s%(X’fo)_l.

Now, we can apply the result above. We can also form a confidence interval for the
second term; just define w = X, — X and apply the earlier result to w'by.

4.7.4 TESTING THE SIGNIFICANCE OF THE REGRESSION

A question that is usually of interest is whether the regression equation as a whole is
significant. This test is a joint test of the hypotheses that all the coefficients except the
constant term are zero. If all the slopes are zero, then the multiple correlation coefficient
is zero as well, so we can base a test of this hypothesis on the value of R2. The central
result needed to carry out the test is the distribution of the statistic

R/(K-1)

T A-R/n-K)
If the hypothesis that 8, = 0 (the part of 8 not including the constant) is true and the
disturbances are normally distributed, then this statistic has an F distribution with K —~1
and n — K degrees of freedom.? Large values of F give evidence against the validity of
the hypothesis. Note that a large F is induced by a large value of RZ.

The logic of the test is that the F statistic is a measure of the loss of fit (namely, all
of R?) that results when we impose the restriction that all the slopes are zero. If F is
large, then the hypothesis is rejected.

F[K—-1,n—K] 4-15)

3The proof of the distributional result appears in Section 6.3.1. The F statistic given above is the special case
inwhichR = [0 | Ix_1].
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Example 4.5 F Test for the Earnings Equation
The F ratio for testing the hypothesis that the four slopes in the earnings equation are all
zero is

0.040995/4
(1~ 0.040995) /(428 — 5)

which is far larger than the 95 percent critical value of 2.37. We conclude that the data are
inconsistent with the hypothesis that all the slopes in the earnings equation are zero.

We might have expected the preceding result, given the substantial t ratios presented
earlier. But this case need not always be true. Examples can be constructed in which the
individual coefficients are statistically significant, while jointly they are not. This case can be
regarded as pathological, but the opposite one, in which none of the coefficients is signifi-
cantly different from zero while R? is highly significant, is relatively common. The problem is
that the interaction among the variables may serve to obscure their individual contribution
to the fit of the regression, whereas their joint effect may still be significant. We will return to
this point in Section 4.9.1 in our discussion of multicollinearity.

F[4,423] = =4.521,

4.7.5 MARGINAL DISTRIBUTIONS OF THE TEST STATISTICS

We now consider the relation between the sample test statistics and the data in X. First,
consider the conventional ¢ statistic in (4-14) for testing Hy : B = ﬂ,?,

(bx — BY)

20X X))

Conditional on X, if B, = B (i.e., under Hy), then ¢ | X has a ¢ distribution with (n — K)
degrees of freedom. What interests us, however, is the marginal, that is, the uncon-
ditional, distribution of . As we saw, b is only normally distributed conditionally on
X; the marginal distribution may not be normal because it depends on X (through
the conditional variance). Similarly, because of the presence of X, the denominator
of the ¢ statistic is not the square root of a chi-squared variable divided by its de-
grees of freedom, again, except conditional on this X. But, because the distributions
of {(bx — B)/[0>X'X)ee ]?} | X and [(n — K)s?/o?] | X are still independent N[0, 1]
and y’[n — K], respectively, which do not involve X, we have the surprising result that,
regardless of the distribution of X, or even of whether X is stochastic or nonstochastic,
the marginal distributions of ¢ is still 7, even though the marginal distribution of b, may
be nonnormal. This intriguing result follows because f(z | X) is not a function of X. The
same reasoning can be used to deduce that the usual F ratio used for testing linear
restrictions is valid whether X is stochastic or not. This result is very powerful. The
implication is that if the disturbances are normally distributed, then we may carry out
tests and construct confidence intervals for the parameters without making any changes
in our procedures, regardless of whether the regressors are stochastic, nonstochastic, or
some mix of the two.

(X =

4.8 FINITE-SAMPLE PROPERTIES
OF LEAST SQUARES

A summary of the results we have obtained for the least squares estimator appears
in Table 4.3. For constructing confidence intervals and testing hypotheses, we derived
some additional results that depended explicitly on the normality assumption. Only
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TABLE 4.3 F

General results:

FS1. E[b|X]= E[b] = B. Least squares is unbiased.

FS2. Var[b|X] = 0%(X'X)"}; Var[b] = 62 E[(X'X)"1].

FS3. Gauss—Markov theorem: The MVLUE of w'g is w'b.

FSd4. E[s*|X] = E[s’] =02

FS5. Covib,e|X] = E[(b - B)e' | X] = E[(X'X) X'ee’M|X] = 0 as X' (¢2DM = 0.
Results that follow from Assumption A6, normally distributed disturbances:

F86. b and e are statistically independent. It follows that b and s? are uncorrelated and
statistically independent.

FS7. The exact distribution of b | X, is N[, 02(X’X)"'].

FS8. (n— K)s?/o? ~ x*[n — K].s? has mean o2 and variance 20*/(n — K).

Test Statistics based on results FS6 through FS8:

FS9. t[n— K] = (b — Bo/[s*(X’X) ' ~ t[n — K] independently of X.

FS10. The test statistic for testing the null hypothesis that all slopes in the model are zero,
F[K—1,n—K]=[R/(K-1]/[(1- R?)/(n— K)] has an F distribution with K — 1 and n — K
degrees of freedom when the null hypothesis is true.

- FS7 depends on whether X is stochastic or not. If so, then the marginal distribution of
b depends on that of X. Note the distinction between the properties of b established
using A1l through A4 and the additional inference results obtained with the further
assumption of normality of the disturbances. The primary result in the first set is the
Gauss-Markov theorem, which holds regardless of the distribution of the disturbances.
The important additional results brought by the normality assumption are FS9 and FS10.

4.9 DATA PROBLEMS

In this section, we consider three practical problems that arise in the setting of regression
analysis, multicollinearity, missing observations and outliers.

4.9.1 MULTICOLLINEARITY

The Gauss-Markov theorem states that among all linear unbiased estimators, the least
squares estimator has the smallest variance. Although this result is useful, it does not
assure us that the least squares estimator has a small variance in any absolute sense.
Consider, for example, a model that contains two explanatory variables and a constant.
For either slope coefficient,

o? o?

(1—rh) Y — %02 (1 rty) S’
If the two variables are perfectly correlated, then the variance is infinite. The case of
an exact linear relationship among the regressors is a serious failure of the assumptions
of the model, not of the data. The more common case is one in which the variables
are highly, but not perfectly, correlated. In this instance, the regression model retains
all its assumed properties, although potentially severe statistical problems arise. The

Var[by] = k=1,2.  (4-16)
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problem faced by applied researchers when regressors are highly, although not perfectly,
correlated include the following symptoms:

e Small changes in the data produce wide swings in the parameter estimates.

e Coefficients may have very high standard errors and low significance levels even
though they are jointly significant and the R? for the regression is quite high.

o Coecfficients may have the “wrong” sign or implausible magnitudes.

For convenience, define the data matrix, X, to contain a constant and K — 1 other
variables measured in deviations from their means. Let x;, denote the kth variable, and
let X4 denote all the other variables (including the constant term). Then, in the inverse
matrix, (X'X) ™!, the kth diagonal element is

(KeMoxe) ™ = X% — XXty (Xl X)) ™ Xipoe] ™

-1

! ’ “1 ’
— e (12 ¥ (Xl X)Xl
= | XXk - X;< X2 (4_17)
_ 1
- (1- RSk’

where R? is the R? in the regression of x on all the other variables. In the multiple
regression model, the variance of the kth least squares coefficient estimator is o2 times
this ratio. It then follows that the more highly correlated a variable is with the other
variables in the model (collectively), the greater its variance will be. In the most extreme
case, in which x, can be written as a linear combination of the other variables so that
R,Z(' =1, the variance becomes infinite. The result

o

(1- RY) > (xix — %2

shows the three ingredients of the precision of the kth least squares coefficient estimator:

Var[b] =

(4-18)

e  Other things being equal, the greater the correlation of x; with the other
variables, the higher the variance will be, due to multicollinearity.

e  Other things being equal, the greater the variation in xy, the lower the variance
will be. This result is shown in Figure 4.2.

s Other things being equal, the better the overall fit of the regression, the lower the
variance will be. This result would follow from a lower value of o>. We have yet to
develop this implication, but it can be suggested by Figure 4.2 by imagining the
identical figure in the right panel but with all the points moved closer to the
regression line.

Since nonexperimental data will never be orthogonal (R =0), to some extent
multicollinearity will always be present. When is multicollinearity a problem? That is,
when are the variances of our estimates so adversely affected by this intercorrelation that
we should be “concerned?” Some computer packages report a variance inflation factor
(VIF), 1/(1 — R?), for each coefficient in a regression as a diagnostic statistic. As can
be seen, the VIF for a variable shows the increase in Var[by] that can be attributable to
the fact that this variable is not orthogonal to the other variables in the model. Another
measure that is specifically directed at X is the condition number of X'X, which is the
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TABLE 4. -ongley Results: Dependent Variable yment
1947-1961 Variance Inflation 1947-1962
Constant 1,459,415 1,169,087
Year —721.756 251.839 —576.464
GNP deflator —-181.123 75.6716 —19.7681
GNP 0.0910678 132.467 0.0643940
Armed Forces —0.0749370 1.55319 —0.0101453

square root ratio of the largest characteristic root of X'X (after scaling each column so
that it has unit length) to the smallest. Values in excess of 20 are suggested as indicative
of a problem [Belsley, Kuh, and Welsch (1980)]. (The condition number for the Longley
data of Example 4.6 is over 15,000!)

Example 4.6 Multicollinearity in the Longley Data

The data in Table F4.2 were assembled by J. Longley (1967) for the purpose of assessing the
accuracy of least squares computations by computer programs. (These data are still widely
used for that purpose.) The Longley data are notorious for severe multicollinearity. Note, for
example, the last year of the data set. The last observation does not appear to be unusual.
But, the results in Table 4.4 show the dramatic effect of dropping this single observation from
a regression of employment on a constant and the other variables. The last coefficient rises
by 600 percent, and the third rises by 800 percent.

Several strategies have been proposed for finding and coping with multicollinear-
ity.* Under the view that a multicollinearity “problem” arises because of a shortage of
information, one suggestion is to obtain more data. One might argue that if analysts had
such additional information available at the outset, they ought to have used it before
reaching this juncture. More information need not mean more observations, however.
The obvious practical remedy (and surely the most frequently used) is to drop variables
suspected of causing the problem from the regression—that is, to impose on the regres-
sion an assumption, possibly erroneous, that the “problem” variable does not appear in
the model. In doing so, one encounters the problems of specification that we will discuss
in Section 8.2. If the variable that is dropped actually belongs in the model (in the sense
that its coefficient, B, is not zero), then estimates of the remaining coefficients will be
biased, possibly severely so. On the other hand, overfitting—that is, trying to estimate a
model that is too large—is a common error, and dropping variables from an excessively
specified model might have some virtue. Several other practical approaches have also

- been suggested. The ridge regression estimator is b, = [X'X + rD]~' X'y, where D is a
diagonal matrix. This biased estimator has a covariance matrix unambiguously smaller
than that of b. The tradeoff of some bias for smaller variance may be worth making
(see Judge et al., 1985), but, nonetheless, economists are generally averse to biased
estimators, so this approach has seen little practical use. Another approach sometimes
used [see, e.g., Gurmu, Rilstone, and Stern (1999)] is to use a small number, say L, of
principal components constructed from the K original variables. [See Johnson and
Wichern (1999).] The problem here is that if the original model in the formy = X8 + ¢
were correct, then it is unclear what one is estimating when one regresses y on some

#See Hill and Adkins (2001) for a description of the standard set of tools for diagnosing collinearity.
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small set of linear combinations of the columns of X. Algebraically, it is simple; at least
for the principal components case, in which we regress y on Z =XC/, to obtain d, it
follows that F [d] = § = C,C} B. In an economic context, if 8 has an interpretation, then
it is unlikely that § will. (How do we interpret the price elasticity plus minus twice the
income elasticity?)

Using diagnostic tools to detect multicollinearity could be viewed as an attempt
to distinguish a bad model from bad data. But, in fact, the problem only stems from
a prior opinion with which the data seem to be in conflict. A finding that suggests
multicollinearity is adversely affecting the estimates seems to suggest that but for this
effect, all the coefficients would be statistically significant and of the right sign. Of course,
this situation need not be the case. If the data suggest that a variable is unimportant in
a model, then, the theory notwithstanding, the researcher ultimately has to decide how
strong the commitment is to that theory. Suggested “remedies” for multicollinearity
might well amount to attempts to force the theory on the data.

4.9.2 MISSING OBSERVATIONS

It is fairly common for a data set to have gaps, for a variety of reasons. Perhaps the
most common occurrence of this problem is in survey data, in which it often happens
that respondents simply fail to answer the questions. In a time series, the data may
be missing because they do not exist at the frequency we wish to observe them; for
example, the model may specify monthly relationships, but some variables are observed
only quarterly.

There are two possible cases to consider, depending on why the data are missing.
One is that the data are simply unavailable, for reasons unknown to the analyst and
unrelated to the completeness of the other observations in the sample. If this is the case,
then the complete observations in the sample constitute a usable data set, and the only
issue is what possibly helpful information could be salvaged from the incomplete obser-
vations. Griliches (1986) calls this the ignorable case in that, for purposes of estimation,
if we are not concerned with efficiency, then we may simply ignore the problem. A
second case, which has attracted a great deal of attention in the econometrics literature,
is that in which the gaps in the data set are not benign but are systematically related
to the phenomenon being modeled. This case happens most often in surveys when the
data are “self-selected” or “self-reported.”® For example, if a survey were designed to
study expenditure patterns and if high-income individuals tended to withhold infor-
mation about their income, then the gaps in the data set would represent more than
just missing information. In this case, the complete observations would be qualitatively
different. We treat this second case in Chapter 22, so we shall defer our discussion until
later.

In general, not much is known about the properties of estimators based on using
predicted values to fill missing values of y. Those results we do have are largely from
simulation studies based on a particular data set or pattern of missing data. The results
of these Monte Carlo studies are usually difficult to generalize. The overall conclusion

>The vast surveys of Americans’ opinions about sex by Ann Landers (1984, passim) and Shere Hite (1987)
constitute two celebrated studies that were surely tainted by a heavy dose of self-selection bias. The latter was
pilloried in numerous publications for purporting to represent the population at large instead of the opinions
of those strongly enough inclined to respond to the survey. The first was presented with much greater modesty.
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seems to be that in a single-equation regression context, filling in missing values of y
leads to biases in the estimator which are difficult to quantify.

For the case of missing data in the regressors, it helps to consider the simple regres-
sion and multiple regression cases separately. In the first case, X has two columns the
column of 1s for the constant and a column with some blanks where the missing data
would be if we had them. Several schemes have been suggested for filling the blanks.
The zero-order method of replacing each missing x with ¥ results in no changes and is
equivalent to dropping the incomplete data. (See Exercise 7 in Chapter 3.) However,
the R? will be lower. An alternative, modified zero-order regression is to fill the sec-
ond column of X with zeros and add a variable that takes the value one for missing
observations and zero for complete ones.® We leave it as an exercise to show that this
is algebraically identical to simply filling the gaps with ¥ Last, there is the possibility of
computing fitted values for the missing x’s by a regression of x on y in the complete
data. The sampling properties of the resulting estimator are largely unknown, but what
evidence there is suggests that this is not a beneficial way to proceed.”

4.9.3 REGRESSION DIAGNOSTICS AND
INFLUENTIAL DATA POINTS

Even in the absence of multicollinearity or other data problems, it is worthwhile to
examine one’s data closely for two reasons. First, the identification of outliers in the
data is useful, particularly in relatively small cross sections in which the identity and
perhaps even the ultimate source of the data point may be known. Second, it may be
possible to ascertain which, if any, particular observations are especially influential in
the results obtained. As such, the identification of these data points may call for further
study. It is worth emphasizing, though, that there is a certain danger in singling out
particular observations for scrutiny or even elimination from the sample on the basis of
statistical results that are based on those data. At the extreme, this step may invalidate
the usual inference procedures.
Of particular importance in this analysis is the projection matrix or hat matrix:

P = XX'X)"'X'". (4-19)
This matrix appeared earlier as the matrix that projects any n x 1 vector into the column
space of X. For any vector y, Py is the set of fitted values in the least squares regression
of y on X. The least squares residuals are
e=My=Me=1A-P)e,
so the covariance matrix for the least squares residual vector is
\ Elee'] = o’M = o2(I1 - P).

To identify which residuals are significantly large, we first standardize them by dividing ‘

%See Maddala (1977a, p. 202).

TAfifi and Elashoff (1966, 1967) and Haitovsky (1968). Griliches (1986) considers a number of other
possibilities. : :
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Standardized Residuals
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by the appropriate standard deviations. Thus, we would use
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where ¢; is the ith least squares residual, s = e’e/(n— K), p;; is the ith diagonal element
of P and my;; is the ith diagonal element of M. It is easy to show (we leave it as an exercise)
that e; /m;; = y; — x;b(i) where b(i) is the least squares slope vector computed with-
out this observation, so the standardization is a natural way to investigate whether the
particular observation differs substantially from what should be expected given the
model specification. Dividing by s2, or better, s(i)° scales the observations so that
the value 2.0 [suggested by Belsley, et al. (1980)] provides an appropriate benchmark.
Figure 4.3 illustrates for the Longley data of the previous example. Apparently, 1956
was an unusual year according to this “model.” (What to do with outliers is a question.
Discarding an observation in the middle of a time series is probably a bad idea, though
we may hope to learn something about the data in this way. For a cross section, one may
be able to single out observations that do not conform to the model with this technique.)

4.10 SUMMARY AND CONCLUSIONS

This chapter has examined a set of properties of the least squares estimator that will
apply in all samples, including unbiasedness and efficiency among unbiased estimators.
The assumption of normality of the disturbances produces the distributions of some
useful test statistics which are useful for a statistical assessment of the validity of the
regression model. The finite sample results obtained in this chapter are listed in Table 4.3.
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We also considered some practical problems that arise when data are less than perfect
for the estimation and analysis of the regression model, including multicollinearity and
missing observations.

The formal assumptions of the classical model are pivotal in the results of this
chapter. All of them are likely to be violated in more general settings than the one
considered here. For example, in most cases examined later in the book, the estimator
has a possible bias, but that bias diminishes with increasing sample sizes. Also, we are
going to be interested in hypothesis tests of the type considered here, but at the same
time, the assumption of normality is narrow, so it will be necessary to extend the model
to allow nonnormal disturbances. These and other ‘large sample’ extensions of the linear
model will be considered in Chapter 5.

Key Terms and Concepts

¢ Assumptions ¢ Minimum variance linear ¢ Semiparametric
» Condition number unbiased estimator e Standard Error
» Confidence interval ¢ Missing observations ¢ Standard error of the
¢ Estimator ¢ Multicollinearity regression
* Gauss-Markov Theorem e Qaxaca’s decomposition o Statistical properties
¢ Hat matrix e Optimal linear predictor o Stochastic regressors
e [gnorable case ¢ Orthogonal random o t ratio
¢ Linear estimator variables
e Linear unbiased estimator e Principal components
* Mean squared error * Projection matrix
¢ Minimum mean squared « Sampling distribution
error  Sampling variance

Exercises

1. Suppose that you have two independent unbiased estimators of the same parameter
0, say 6, and @5, with different variances v; and v,. What linear combination f =
€101 + ¢26, is the minimum variance unbiased estimator of 67

2. Consider the simple regression y; = Bx; + & where E e |x] = 0and E[¢? | x] = o?

a.

What is the minimum mean squared error linear estimator of ? [Hint: Let the
estimator be [ = ¢’y]. Choose ¢ to minimize Var[8]+ [E(B — B)]*. The answer
is a function of the unknown parameters.]

. For the estimator in part a, show that ratio of the mean squared error of B to

that of the ordinary least squares estimator b is

MSE [] = i where 12 = &

MSE[b] (1412’ T [e2/xx]’

Note that 7 is the square of the population analog to the “f ratio” for testing
the hypothesis that § = 0, which is given in (4-14). How do you interpret the
behavior of this ratio as T — 0o0?

3. Suppose that the classical regression model applies but that the true value of the
constant is zero. Compare the variance of the least squares slope estimator com-
puted without a constant term with that of the estimator computed with an unnec-
essary constant term.
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4.

10.

11.

Suppose that the regression model is y; = @ + Bx; + &;, where the disturbances &;
have f(¢;) = (1/1) exp(—As;i), & > 0. This model is rather peculiar in that all the
disturbances are assumed to be positive. Note that the disturbances have E[¢; | x;] =
A and Var[e; | x;] = A2. Show that the least squares slope is unbiased but that the
intercept is biased.

Prove that the least squares intercept estimator in the classical regression model is
the minimum variance linear unbiased estimator.

Ass a profit maximizing monopolist, you face the demand curve Q = a+ P +¢.In
the past, you have set the following prices and sold the accompanying quantities:

QO[3 3 7 6 10 15 16 13 9 15 9 15 12 18 21
P[181617121515413116810777

Suppose that your marginal cost is 10. Based on the least squares regression, com-
pute a 95 percent confidence interval for the expected value of the profit maximizing
output.

The following sample moments for x = [1, x1, x,, x3] were computed from 100 ob-
servations produced using a random number generator:

100 123 96 109 460
123 252 125 189 o, _ |810] .,
XX=1"96 15 167 146/ XY= |e15|" Y¥=3924

109 189 146 168 712

The true model underlying these datais y = x; + x» + x3 + &.

a. Compute the simple correlations among the regressors.

b. Compute the ordinary least squares coefficients in the regression of y on a con-
stant x1, x;, and x3.

¢. Compute the ordinary least squares coefficients in the regression of y on a con-
stant x; and x;, on a constant x; and x3, and on a constant x, and x;.

d. Compute the variance inflation factor associated with each variable.

e. The regressors are obviously collinear. Which is the problem variable?

Consider the multiple regression of y on K variables X and an additional variable z.

Prove that under the assumptions A1 through A6 of the classical regression model,

the true variance of the least squares estimator of the slopes on X is larger when z

is included in the regression than when it is not. Does the same hold for the sample

estimate of this covariance matrix? Why or why not? Assume that X and z are

nonstochastic and that the coefficient on z is nonzero.

For the classical normal regression model y = Xg + & with no constant term and

K regressors, assuming that the true value of B is zero, what is the exact expected

value of F[K,n - K] = (R*/K)/[(1 — R)/(n— K)]?

Prove that E[b'b] = 8’8 + o Y&, (1/Ax) where b is the ordinary least squares

estimator and Ay is a characteristic root of X’X.

Data on U.S. gasoline consumption for the years 1960 to 1995 are given in

Table F2.2.

a. Compute the multiple regression of per capita consumption of gasoline, G/pop,
on all the other explanatory variables, including the time trend, and report all
results. Do the signs of the estimates agree with your expectations?
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b.

Test the hypothesis that at least in regard to demand for gasoline, consumers do
not differentiate between changes in the prices of new and used cars.

. Estimate the own price elasticity of demand, the income elasticity, and the cross-

price elasticity with respect to changes in the price of public transportation.

. Reestimate the regression in logarithms so that the coefficients are direct esti-

mates of the elasticities. (Do not use the log of the time trend.) How do your
estimates compare with the results in the previous question? Which specification
do you prefer?

. Notice that the price indices for the automobile market are normalized to 1967,

whereas the aggregate price indices are anchored at 1982. Does this discrepancy
affect the results? How? If you were to renormalize the indices so that they were
all 1.000 in 1982, then how would your results change?
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